Asymptotic Behavior of a Nonhomogeneous Linear Recurrence System
Consider the nonhomogeneous linear recurrence systemxn+1=(A+Bn)xn+gn,where A and Bn (n=0,1,…) are square matrices and gn (n=0,1,…) are column vectors. In this paper, we describe, in terms of the initial condition, the asymptotic behavior of the solutions of this equation in the case when A has a sim...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2002-03, Vol.267 (2), p.626-642 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider the nonhomogeneous linear recurrence systemxn+1=(A+Bn)xn+gn,where A and Bn (n=0,1,…) are square matrices and gn (n=0,1,…) are column vectors. In this paper, we describe, in terms of the initial condition, the asymptotic behavior of the solutions of this equation in the case when A has a simple dominant eigenvalue λ0,∑n=0∞⫫Bn⫫ |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1006/jmaa.2001.7797 |