Asymptotic Behavior of a Nonhomogeneous Linear Recurrence System

Consider the nonhomogeneous linear recurrence systemxn+1=(A+Bn)xn+gn,where A and Bn (n=0,1,…) are square matrices and gn (n=0,1,…) are column vectors. In this paper, we describe, in terms of the initial condition, the asymptotic behavior of the solutions of this equation in the case when A has a sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2002-03, Vol.267 (2), p.626-642
1. Verfasser: Pituk, Mihály
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider the nonhomogeneous linear recurrence systemxn+1=(A+Bn)xn+gn,where A and Bn (n=0,1,…) are square matrices and gn (n=0,1,…) are column vectors. In this paper, we describe, in terms of the initial condition, the asymptotic behavior of the solutions of this equation in the case when A has a simple dominant eigenvalue λ0,∑n=0∞⫫Bn⫫
ISSN:0022-247X
1096-0813
DOI:10.1006/jmaa.2001.7797