Asymptotically Nonexpansive Mappings in Modular Function Spaces
In this paper, we prove that if ρ is a convex, σ-finite modular function satisfying a Δ2-type condition, C a convex, ρ-bounded, ρ-a.e. compact subset of Lρ, and T: C→C a ρ-asymptotically nonexpansive mapping, then T has a fixed point. In particular, any asymptotically nonexpansive self-map defined o...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2002-01, Vol.265 (2), p.249-263 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove that if ρ is a convex, σ-finite modular function satisfying a Δ2-type condition, C a convex, ρ-bounded, ρ-a.e. compact subset of Lρ, and T: C→C a ρ-asymptotically nonexpansive mapping, then T has a fixed point. In particular, any asymptotically nonexpansive self-map defined on a convex subset of L1(Ω,μ) which is compact for the topology of local convergence in measure has a fixed point. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1006/jmaa.2000.7275 |