Asymptotically Nonexpansive Mappings in Modular Function Spaces

In this paper, we prove that if ρ is a convex, σ-finite modular function satisfying a Δ2-type condition, C a convex, ρ-bounded, ρ-a.e. compact subset of Lρ, and T: C→C a ρ-asymptotically nonexpansive mapping, then T has a fixed point. In particular, any asymptotically nonexpansive self-map defined o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2002-01, Vol.265 (2), p.249-263
Hauptverfasser: Dominguez-Benavides, T., Khamsi, M.A., Samadi, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove that if ρ is a convex, σ-finite modular function satisfying a Δ2-type condition, C a convex, ρ-bounded, ρ-a.e. compact subset of Lρ, and T: C→C a ρ-asymptotically nonexpansive mapping, then T has a fixed point. In particular, any asymptotically nonexpansive self-map defined on a convex subset of L1(Ω,μ) which is compact for the topology of local convergence in measure has a fixed point.
ISSN:0022-247X
1096-0813
DOI:10.1006/jmaa.2000.7275