On the Geodesical Connectedness for a Class of Semi-Riemannian Manifolds

We prove a variational principle for geodesics on a semi-Riemannian manifold M of arbitrary index k and possessing k linearly independent Killing vector fields that generate a timelike distribution on M. Using such a principle and a suitable completeness condition for M, we prove some existence and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2000-12, Vol.252 (1), p.444-476
Hauptverfasser: Giannoni, Fabio, Piccione, Paolo, Sampalmieri, Rosella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a variational principle for geodesics on a semi-Riemannian manifold M of arbitrary index k and possessing k linearly independent Killing vector fields that generate a timelike distribution on M. Using such a principle and a suitable completeness condition for M, we prove some existence and multiplicity results for geodesics joining two fixed points of M.
ISSN:0022-247X
1096-0813
DOI:10.1006/jmaa.2000.7103