On the Geodesical Connectedness for a Class of Semi-Riemannian Manifolds
We prove a variational principle for geodesics on a semi-Riemannian manifold M of arbitrary index k and possessing k linearly independent Killing vector fields that generate a timelike distribution on M. Using such a principle and a suitable completeness condition for M, we prove some existence and...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2000-12, Vol.252 (1), p.444-476 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a variational principle for geodesics on a semi-Riemannian manifold M of arbitrary index k and possessing k linearly independent Killing vector fields that generate a timelike distribution on M. Using such a principle and a suitable completeness condition for M, we prove some existence and multiplicity results for geodesics joining two fixed points of M. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1006/jmaa.2000.7103 |