Loewner Chains and the Roper–Suffridge Extension Operator
Let f be a locally univalent function on the unit disc and let α∈[0,12]. We consider the family of operators extending f to a holomorphic map from the unit ball B in Cn to Cn given by Φn,α(f)(z)=(f(z1),z′(f′(z1))α), where z′= (z2,…,zn). When α=12 we obtain the Roper–Suffridge extension operator. We...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2000-07, Vol.247 (2), p.448-465 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let f be a locally univalent function on the unit disc and let α∈[0,12]. We consider the family of operators extending f to a holomorphic map from the unit ball B in Cn to Cn given by Φn,α(f)(z)=(f(z1),z′(f′(z1))α), where z′= (z2,…,zn). When α=12 we obtain the Roper–Suffridge extension operator. We show that if f∈S then Φn,α(f) can be imbedded in a Loewner chain. Our proof shows that if f∈S* then Φn,α(f) is starlike, and if f∈Ŝβ with |β| |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1006/jmaa.2000.6843 |