On the Choquet–Dolecki Theorem
In this paper, we prove that if a multifunction Φ: T → Xfrom a first countable space Tinto a space Xwith property ( ∗ ) is upper semicontinuous at a point t 0 ∈ T, then the active boundary of Φ at t 0is compact. Moreover, we also show that if Xis an angelic space, then the active boundary of Φ at t...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 1999-06, Vol.234 (1), p.1-5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove that if a multifunction Φ:
T
→
Xfrom a first countable space
Tinto a space
Xwith property (
∗
) is upper semicontinuous at a point
t
0
∈
T, then the active boundary of Φ at
t
0is compact. Moreover, we also show that if
Xis an angelic space, then the active boundary of Φ at
t
0is the smallest kernel of Φ at
t
0. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1006/jmaa.1998.6239 |