On the Choquet–Dolecki Theorem

In this paper, we prove that if a multifunction Φ: T → Xfrom a first countable space Tinto a space Xwith property ( ∗ ) is upper semicontinuous at a point t 0 ∈ T, then the active boundary of Φ at t 0is compact. Moreover, we also show that if Xis an angelic space, then the active boundary of Φ at t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 1999-06, Vol.234 (1), p.1-5
Hauptverfasser: Cao, Jiling, Moors, Warren, Reilly, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove that if a multifunction Φ: T → Xfrom a first countable space Tinto a space Xwith property ( ∗ ) is upper semicontinuous at a point t 0 ∈ T, then the active boundary of Φ at t 0is compact. Moreover, we also show that if Xis an angelic space, then the active boundary of Φ at t 0is the smallest kernel of Φ at t 0.
ISSN:0022-247X
1096-0813
DOI:10.1006/jmaa.1998.6239