Invariance of a Partial Differential Equation of Fractional Order under the Lie Group of Scaling Transformations

In this article a symmetry group of scaling transformations is determined for a partial differential equation of fractional order α, containing among particular cases the diffusion equation, the wave equation, and the fractional diffusion-wave equation. For its group-invariant solutions, an ordinary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 1998-11, Vol.227 (1), p.81-97
Hauptverfasser: Buckwar, Evelyn, Luchko, Yuri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article a symmetry group of scaling transformations is determined for a partial differential equation of fractional order α, containing among particular cases the diffusion equation, the wave equation, and the fractional diffusion-wave equation. For its group-invariant solutions, an ordinary differential equation of fractional order with the new independent variablez=xt−α/2is derived. The derivative then is an Erdelyi–Kober derivative depending on a parameter α. Its complete solution is given in terms of the Wright and the generalized Wright functions.
ISSN:0022-247X
1096-0813
DOI:10.1006/jmaa.1998.6078