Generic Fréchet Differentiability of Convex Functions Dominated by a Lower Semicontinuous Convex Function

In this paper, an extended real-valued proper lower semicontinuous convex functionfon a Banach space is said to have the Fréchet differentiability property (FDP) if every proper lower semicontinuous convex functiongwithg≤fis Fréchet differentiable on a denseGδsubset of intdomg, the interior of the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 1998-09, Vol.225 (2), p.389-400
Hauptverfasser: Lixin, Cheng, Shuzhong, Shi, Bingwu, Wang, Lee, E.S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an extended real-valued proper lower semicontinuous convex functionfon a Banach space is said to have the Fréchet differentiability property (FDP) if every proper lower semicontinuous convex functiongwithg≤fis Fréchet differentiable on a denseGδsubset of intdomg, the interior of the effective domain ofg. We show thatfhas the FDP if and only if thew*-closed convex hull of the image of the subdifferential map offhas the Radon–Nikodým property. This is a generalization of the main theorem in a paper by Lixin and Shuzhong (to appear). According to this result, it also gives several new criteria of Asplund spaces.
ISSN:0022-247X
1096-0813
DOI:10.1006/jmaa.1998.6021