Generic Fréchet Differentiability of Convex Functions Dominated by a Lower Semicontinuous Convex Function
In this paper, an extended real-valued proper lower semicontinuous convex functionfon a Banach space is said to have the Fréchet differentiability property (FDP) if every proper lower semicontinuous convex functiongwithg≤fis Fréchet differentiable on a denseGδsubset of intdomg, the interior of the e...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 1998-09, Vol.225 (2), p.389-400 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, an extended real-valued proper lower semicontinuous convex functionfon a Banach space is said to have the Fréchet differentiability property (FDP) if every proper lower semicontinuous convex functiongwithg≤fis Fréchet differentiable on a denseGδsubset of intdomg, the interior of the effective domain ofg. We show thatfhas the FDP if and only if thew*-closed convex hull of the image of the subdifferential map offhas the Radon–Nikodým property. This is a generalization of the main theorem in a paper by Lixin and Shuzhong (to appear). According to this result, it also gives several new criteria of Asplund spaces. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1006/jmaa.1998.6021 |