On the Weyl Spectrum: Spectral Mapping Theorem and Weyl's Theorem
It is shown that ifTis a dominant operator or an analytic quasi-hyponormal operator on a complex Hilbert space and iffis a function analytic on a neighborhood of σ(T), then σw(f(T))=f(σw(T)), where σ(T) and σw(T) stand respectively for the spectrum and the Weyl spectrum ofT; moreover, Weyl's th...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 1998-04, Vol.220 (2), p.760-768 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that ifTis a dominant operator or an analytic quasi-hyponormal operator on a complex Hilbert space and iffis a function analytic on a neighborhood of σ(T), then σw(f(T))=f(σw(T)), where σ(T) and σw(T) stand respectively for the spectrum and the Weyl spectrum ofT; moreover, Weyl's theorem holds forf(T)+Fif “dominant” is replaced by “M-hyponormal,” whereFis any finite rank operator commuting withT. These generalize earlier results for hyponormal operators. It is also shown that there exist an operatorTand a finite rank operatorFcommuting withTsuch that Weyl's theorem holds forTbut not forT+F. This answers negatively a problem raised by K. K. Oberai (Illinois J. Math.21, 1977, 84–90). However, ifTis required to be isoloid, then the statement that Weyl's theorem holds forTwill imply it holds forT+F. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1006/jmaa.1997.5897 |