On the Weyl Spectrum: Spectral Mapping Theorem and Weyl's Theorem

It is shown that ifTis a dominant operator or an analytic quasi-hyponormal operator on a complex Hilbert space and iffis a function analytic on a neighborhood of σ(T), then σw(f(T))=f(σw(T)), where σ(T) and σw(T) stand respectively for the spectrum and the Weyl spectrum ofT; moreover, Weyl's th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 1998-04, Vol.220 (2), p.760-768
Hauptverfasser: Hou, Jin-Chuan, Zhang, Xiu-Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that ifTis a dominant operator or an analytic quasi-hyponormal operator on a complex Hilbert space and iffis a function analytic on a neighborhood of σ(T), then σw(f(T))=f(σw(T)), where σ(T) and σw(T) stand respectively for the spectrum and the Weyl spectrum ofT; moreover, Weyl's theorem holds forf(T)+Fif “dominant” is replaced by “M-hyponormal,” whereFis any finite rank operator commuting withT. These generalize earlier results for hyponormal operators. It is also shown that there exist an operatorTand a finite rank operatorFcommuting withTsuch that Weyl's theorem holds forTbut not forT+F. This answers negatively a problem raised by K. K. Oberai (Illinois J. Math.21, 1977, 84–90). However, ifTis required to be isoloid, then the statement that Weyl's theorem holds forTwill imply it holds forT+F.
ISSN:0022-247X
1096-0813
DOI:10.1006/jmaa.1997.5897