Extremity in Köthe–Bochner Function Spaces
LetEbe a Köthe function space over a complete measurable space andXa Banach space. Recall an elementhinEis said to beorder continuousif, for any decreasing sequence {gn} inSE, ⋀ngn=0 andgn≤|h| implies limn→∞gn=0. We show that every denting point of the unit ball ofEis order continuous. Using this re...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 1998-02, Vol.218 (1), p.136-154 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | LetEbe a Köthe function space over a complete measurable space andXa Banach space. Recall an elementhinEis said to beorder continuousif, for any decreasing sequence {gn} inSE, ⋀ngn=0 andgn≤|h| implies limn→∞gn=0. We show that every denting point of the unit ball ofEis order continuous. Using this result, we prove thatfis a denting point of the unit ball ofE(X) if and only if•‖(·)‖is a denting point of the unit ball of.•for almost all∈supp,()/‖()‖is a denting point of the unit ball of.Suppose thatEis order continuous. We also prove that for any unit vectorfinE(X), if ‖f(·)‖Xis a strongly exposed point of the unit ball ofEand for almost allt∈suppf,f(t)/‖f(t)‖Xis a strongly exposed point of the unit ball ofX, thenfis a strongly exposed point of the unit ball ofE(X). |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1006/jmaa.1997.5765 |