Smoothing for Nonlinear Parabolic Equations with Nonlinear Boundary Conditions

Of concern are parabolic problems of the form ∂u/∂t=∇·ψ(x,∇u) for (x,t)∈Ω×[0,T] with Ω⊂Rn, −ψ(x,∇u)·ν=β(x,u) for (x,t)∈∂Ω×[0,T],u(x,0)=f(x) forx∈Ω. Under suitable conditions it is shown that forf∈L1(Ω) andt>0, one hasu(·,t)∈L∞(Ω) and ‖u(·,t)‖∞≤C(T)‖f‖1/tn/2and ‖ut(·,t)‖2≤C(T)‖f‖1/tn/4+1 fort∈(0,T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 1997-09, Vol.213 (2), p.422-443
Hauptverfasser: Goldstein, Gisèle Ruiz, Goldstein, Jerome A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Of concern are parabolic problems of the form ∂u/∂t=∇·ψ(x,∇u) for (x,t)∈Ω×[0,T] with Ω⊂Rn, −ψ(x,∇u)·ν=β(x,u) for (x,t)∈∂Ω×[0,T],u(x,0)=f(x) forx∈Ω. Under suitable conditions it is shown that forf∈L1(Ω) andt>0, one hasu(·,t)∈L∞(Ω) and ‖u(·,t)‖∞≤C(T)‖f‖1/tn/2and ‖ut(·,t)‖2≤C(T)‖f‖1/tn/4+1 fort∈(0,T] andn≥3. Analogous estimates are obtained with other powers oftin dimensionsn=1,2.
ISSN:0022-247X
1096-0813
DOI:10.1006/jmaa.1997.5545