Smoothing for Nonlinear Parabolic Equations with Nonlinear Boundary Conditions
Of concern are parabolic problems of the form ∂u/∂t=∇·ψ(x,∇u) for (x,t)∈Ω×[0,T] with Ω⊂Rn, −ψ(x,∇u)·ν=β(x,u) for (x,t)∈∂Ω×[0,T],u(x,0)=f(x) forx∈Ω. Under suitable conditions it is shown that forf∈L1(Ω) andt>0, one hasu(·,t)∈L∞(Ω) and ‖u(·,t)‖∞≤C(T)‖f‖1/tn/2and ‖ut(·,t)‖2≤C(T)‖f‖1/tn/4+1 fort∈(0,T...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 1997-09, Vol.213 (2), p.422-443 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Of concern are parabolic problems of the form ∂u/∂t=∇·ψ(x,∇u) for (x,t)∈Ω×[0,T] with Ω⊂Rn, −ψ(x,∇u)·ν=β(x,u) for (x,t)∈∂Ω×[0,T],u(x,0)=f(x) forx∈Ω. Under suitable conditions it is shown that forf∈L1(Ω) andt>0, one hasu(·,t)∈L∞(Ω) and ‖u(·,t)‖∞≤C(T)‖f‖1/tn/2and ‖ut(·,t)‖2≤C(T)‖f‖1/tn/4+1 fort∈(0,T] andn≥3. Analogous estimates are obtained with other powers oftin dimensionsn=1,2. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1006/jmaa.1997.5545 |