Zeta Functions, Heat Kernel Expansions, and Asymptotics for q-Bessel Functions
Analytic structure of the zeta functions ζ ν( z; q) = Σ ∞ n=1 [ j ν n ( q)] − z of the zeros j ν n ( q) of the q-Bessel functions J ν( x; q) and J (2) ν( x; q) is studied. All poles and corresponding residues of ζ ν are found. Explicit formulas for ζ ν(2 n; q) at n = ±1, ±2, ... are obtained. Asympt...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 1995-12, Vol.196 (3), p.947-964 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Analytic structure of the zeta functions ζ
ν(
z;
q) = Σ
∞
n=1
[
j
ν
n
(
q)]
−
z
of the zeros
j
ν
n
(
q) of the
q-Bessel functions
J
ν(
x;
q) and
J
(2)
ν(
x;
q) is studied. All poles and corresponding residues of ζ
ν are found. Explicit formulas for ζ
ν(2
n;
q) at
n = ±1, ±2, ... are obtained. Asymptotics of the sum
Z
ν(
t;
q) = Σ
n
exp[−
tj
2
ν
n
(
q)] as
t ↓ 0 ("heat kernel expansion") is derived. Asymptotics of the
q-Bessel functions at large arguments are found. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1006/jmaa.1995.1453 |