Zeta Functions, Heat Kernel Expansions, and Asymptotics for q-Bessel Functions

Analytic structure of the zeta functions ζ ν( z; q) = Σ ∞ n=1 [ j ν n ( q)] − z of the zeros j ν n ( q) of the q-Bessel functions J ν( x; q) and J (2) ν( x; q) is studied. All poles and corresponding residues of ζ ν are found. Explicit formulas for ζ ν(2 n; q) at n = ±1, ±2, ... are obtained. Asympt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 1995-12, Vol.196 (3), p.947-964
1. Verfasser: Kvitsinsky, A.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Analytic structure of the zeta functions ζ ν( z; q) = Σ ∞ n=1 [ j ν n ( q)] − z of the zeros j ν n ( q) of the q-Bessel functions J ν( x; q) and J (2) ν( x; q) is studied. All poles and corresponding residues of ζ ν are found. Explicit formulas for ζ ν(2 n; q) at n = ±1, ±2, ... are obtained. Asymptotics of the sum Z ν( t; q) = Σ n exp[− tj 2 ν n ( q)] as t ↓ 0 ("heat kernel expansion") is derived. Asymptotics of the q-Bessel functions at large arguments are found.
ISSN:0022-247X
1096-0813
DOI:10.1006/jmaa.1995.1453