Inertia of Operator Polynomials and Stability of Differential Equations

We extend to operator polynomials some inertia theorems obtained recently for linear bounded operators in a Hilbert space. These theorems are applied to study dichotomy and stability of high degree ordinary differential equations with operator coefficients. The concept of generalized Bezoutian is in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 1995-06, Vol.192 (2), p.579-606
Hauptverfasser: Lerer, L., Rodman, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend to operator polynomials some inertia theorems obtained recently for linear bounded operators in a Hilbert space. These theorems are applied to study dichotomy and stability of high degree ordinary differential equations with operator coefficients. The concept of generalized Bezoutian is introduced in the framework of operator polynomials and is used to obtain the main results.
ISSN:0022-247X
1096-0813
DOI:10.1006/jmaa.1995.1191