A Nonlinear Functional on the Dirichlet Space
The nonlinear functional Λ1(f) = (1/2π) ∫2π0e|f(eiθ|2dθ was shown by Chang and Marshall to be bounded on the unit ball B of the space D of analytic functions in the unit disk with finite Dirichlet integral. We show that Λ1 is weakly continuous on B except at zero and that Λ1 attains its maximum over...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 1995-04, Vol.191 (2), p.380-401 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The nonlinear functional Λ1(f) = (1/2π) ∫2π0e|f(eiθ|2dθ was shown by Chang and Marshall to be bounded on the unit ball B of the space D of analytic functions in the unit disk with finite Dirichlet integral. We show that Λ1 is weakly continuous on B except at zero and that Λ1 attains its maximum over a subset of B determined by kernel functions. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1006/jmaa.1995.1136 |