On Certain Extremal Problems for Polynomials
For a given set of n natural numbers v 1, ..., v n there exists a unique monic polynomial τ∗( x) ≔ Π n j=1 ( x − x* j ) vj , where −1 < x* 1 < ··· < x* n < 1 along with n + 1 points −1 =: t* 0 < t* 1 < ··· < t* n ≔ 1 such that |τ∗( t* k )| = max − 1 ≤ x ≤ 1 |τ∗( x)\ for k = 0, ....
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 1995-02, Vol.189 (3), p.781-800 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 800 |
---|---|
container_issue | 3 |
container_start_page | 781 |
container_title | Journal of mathematical analysis and applications |
container_volume | 189 |
creator | Bojanov, B.D. Rahman, Q.I. |
description | For a given set of
n natural numbers
v
1, ...,
v
n
there exists a
unique monic polynomial τ∗(
x) ≔ Π
n
j=1
(
x −
x*
j
)
vj
, where −1 <
x*
1 < ··· <
x*
n
< 1 along with
n + 1 points −1 =:
t*
0 <
t*
1 < ··· <
t*
n
≔ 1 such that |τ∗(
t*
k
)| = max
− 1 ≤
x ≤ 1
|τ∗(
x)\ for
k = 0, ...,
n. The polynomial τ∗ is a generalization of the Chebyshev polynomial
T
N
(
x) ≔ cos(
N are cos
x) in the sense that its supremum norm on [−1, 1] is the smallest amongst all polynomials of the form Π
n
j=1
(
x −
x
j
)
vj
, where −1 ≤
x
1 ≤ ··· ≤
x
n
≤ 1. Here, for polynomials of the form
P(
z) ≔
c Π
n
j=1
(
z −
x
j
)
vj
, −1 ≤
x
1 ≤ ··· ≤
x
n
≤ 1, where
v
1,...,
v
n, are prescribed we consider the problems of estimating (i) the
L
p
norm of
P
(
k)
on [−1, 1] for
p ∈ [1, ∞], (ii) |
P
(
k)
(
z)| at an arbitrary point outside the unit disk, given that the supremum norm of
P on [−1, 1] does not exceed that of the (corresponding) generalized Chebyshev polynomial τ∗. It turns out that τ∗ is extremal for both the problems. |
doi_str_mv | 10.1006/jmaa.1995.1051 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmaa_1995_1051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X85710517</els_id><sourcerecordid>S0022247X85710517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-a2bf9cc0c0c30a718facb7016eaa39f894488cd2b3032668b3489d78a11e53423</originalsourceid><addsrcrecordid>eNp1j81LAzEQxYMoWKtXz3vw6NZMsvk6SvELCu1BwVuYzSaQsh8lWcT-9-5S8SZzeAy8N_N-hNwCXQGl8mHfIa7AGDGtAs7IAqiRJdXAz8mCUsZKVqnPS3KV855SAKFgQe63fbH2acTYF0_fY_IdtsUuDXXru1yEIRW7oT32QxexzdfkIkzib351ST6en97Xr-Vm-_K2ftyUjgsxlsjqYJyj03CKCnRAVysK0iNyE7SpKq1dw2pOOZNS17zSplEaAbzgFeNLsjrddWnIOflgDyl2mI4WqJ1Z7cxqZ1Y7s06Bu1PggNlhGxL2Lua_FBdSSaYmmz7Z_FT-K_pks4u-d76JybvRNkP878MPuzhmcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Certain Extremal Problems for Polynomials</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bojanov, B.D. ; Rahman, Q.I.</creator><creatorcontrib>Bojanov, B.D. ; Rahman, Q.I.</creatorcontrib><description><![CDATA[For a given set of
n natural numbers
v
1, ...,
v
n
there exists a
unique monic polynomial τ∗(
x) ≔ Π
n
j=1
(
x −
x*
j
)
vj
, where −1 <
x*
1 < ··· <
x*
n
< 1 along with
n + 1 points −1 =:
t*
0 <
t*
1 < ··· <
t*
n
≔ 1 such that |τ∗(
t*
k
)| = max
− 1 ≤
x ≤ 1
|τ∗(
x)\ for
k = 0, ...,
n. The polynomial τ∗ is a generalization of the Chebyshev polynomial
T
N
(
x) ≔ cos(
N are cos
x) in the sense that its supremum norm on [−1, 1] is the smallest amongst all polynomials of the form Π
n
j=1
(
x −
x
j
)
vj
, where −1 ≤
x
1 ≤ ··· ≤
x
n
≤ 1. Here, for polynomials of the form
P(
z) ≔
c Π
n
j=1
(
z −
x
j
)
vj
, −1 ≤
x
1 ≤ ··· ≤
x
n
≤ 1, where
v
1,...,
v
n, are prescribed we consider the problems of estimating (i) the
L
p
norm of
P
(
k)
on [−1, 1] for
p ∈ [1, ∞], (ii) |
P
(
k)
(
z)| at an arbitrary point outside the unit disk, given that the supremum norm of
P on [−1, 1] does not exceed that of the (corresponding) generalized Chebyshev polynomial τ∗. It turns out that τ∗ is extremal for both the problems.]]></description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1006/jmaa.1995.1051</identifier><identifier>CODEN: JMANAK</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Exact sciences and technology ; Functions of a complex variable ; Mathematical analysis ; Mathematics ; Real functions ; Sciences and techniques of general use ; Special functions</subject><ispartof>Journal of mathematical analysis and applications, 1995-02, Vol.189 (3), p.781-800</ispartof><rights>1995 Academic Press</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-a2bf9cc0c0c30a718facb7016eaa39f894488cd2b3032668b3489d78a11e53423</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022247X85710517$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3567627$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bojanov, B.D.</creatorcontrib><creatorcontrib>Rahman, Q.I.</creatorcontrib><title>On Certain Extremal Problems for Polynomials</title><title>Journal of mathematical analysis and applications</title><description><![CDATA[For a given set of
n natural numbers
v
1, ...,
v
n
there exists a
unique monic polynomial τ∗(
x) ≔ Π
n
j=1
(
x −
x*
j
)
vj
, where −1 <
x*
1 < ··· <
x*
n
< 1 along with
n + 1 points −1 =:
t*
0 <
t*
1 < ··· <
t*
n
≔ 1 such that |τ∗(
t*
k
)| = max
− 1 ≤
x ≤ 1
|τ∗(
x)\ for
k = 0, ...,
n. The polynomial τ∗ is a generalization of the Chebyshev polynomial
T
N
(
x) ≔ cos(
N are cos
x) in the sense that its supremum norm on [−1, 1] is the smallest amongst all polynomials of the form Π
n
j=1
(
x −
x
j
)
vj
, where −1 ≤
x
1 ≤ ··· ≤
x
n
≤ 1. Here, for polynomials of the form
P(
z) ≔
c Π
n
j=1
(
z −
x
j
)
vj
, −1 ≤
x
1 ≤ ··· ≤
x
n
≤ 1, where
v
1,...,
v
n, are prescribed we consider the problems of estimating (i) the
L
p
norm of
P
(
k)
on [−1, 1] for
p ∈ [1, ∞], (ii) |
P
(
k)
(
z)| at an arbitrary point outside the unit disk, given that the supremum norm of
P on [−1, 1] does not exceed that of the (corresponding) generalized Chebyshev polynomial τ∗. It turns out that τ∗ is extremal for both the problems.]]></description><subject>Exact sciences and technology</subject><subject>Functions of a complex variable</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Real functions</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp1j81LAzEQxYMoWKtXz3vw6NZMsvk6SvELCu1BwVuYzSaQsh8lWcT-9-5S8SZzeAy8N_N-hNwCXQGl8mHfIa7AGDGtAs7IAqiRJdXAz8mCUsZKVqnPS3KV855SAKFgQe63fbH2acTYF0_fY_IdtsUuDXXru1yEIRW7oT32QxexzdfkIkzib351ST6en97Xr-Vm-_K2ftyUjgsxlsjqYJyj03CKCnRAVysK0iNyE7SpKq1dw2pOOZNS17zSplEaAbzgFeNLsjrddWnIOflgDyl2mI4WqJ1Z7cxqZ1Y7s06Bu1PggNlhGxL2Lua_FBdSSaYmmz7Z_FT-K_pks4u-d76JybvRNkP878MPuzhmcQ</recordid><startdate>19950201</startdate><enddate>19950201</enddate><creator>Bojanov, B.D.</creator><creator>Rahman, Q.I.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950201</creationdate><title>On Certain Extremal Problems for Polynomials</title><author>Bojanov, B.D. ; Rahman, Q.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-a2bf9cc0c0c30a718facb7016eaa39f894488cd2b3032668b3489d78a11e53423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Exact sciences and technology</topic><topic>Functions of a complex variable</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Real functions</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bojanov, B.D.</creatorcontrib><creatorcontrib>Rahman, Q.I.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bojanov, B.D.</au><au>Rahman, Q.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Certain Extremal Problems for Polynomials</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>1995-02-01</date><risdate>1995</risdate><volume>189</volume><issue>3</issue><spage>781</spage><epage>800</epage><pages>781-800</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><coden>JMANAK</coden><abstract><![CDATA[For a given set of
n natural numbers
v
1, ...,
v
n
there exists a
unique monic polynomial τ∗(
x) ≔ Π
n
j=1
(
x −
x*
j
)
vj
, where −1 <
x*
1 < ··· <
x*
n
< 1 along with
n + 1 points −1 =:
t*
0 <
t*
1 < ··· <
t*
n
≔ 1 such that |τ∗(
t*
k
)| = max
− 1 ≤
x ≤ 1
|τ∗(
x)\ for
k = 0, ...,
n. The polynomial τ∗ is a generalization of the Chebyshev polynomial
T
N
(
x) ≔ cos(
N are cos
x) in the sense that its supremum norm on [−1, 1] is the smallest amongst all polynomials of the form Π
n
j=1
(
x −
x
j
)
vj
, where −1 ≤
x
1 ≤ ··· ≤
x
n
≤ 1. Here, for polynomials of the form
P(
z) ≔
c Π
n
j=1
(
z −
x
j
)
vj
, −1 ≤
x
1 ≤ ··· ≤
x
n
≤ 1, where
v
1,...,
v
n, are prescribed we consider the problems of estimating (i) the
L
p
norm of
P
(
k)
on [−1, 1] for
p ∈ [1, ∞], (ii) |
P
(
k)
(
z)| at an arbitrary point outside the unit disk, given that the supremum norm of
P on [−1, 1] does not exceed that of the (corresponding) generalized Chebyshev polynomial τ∗. It turns out that τ∗ is extremal for both the problems.]]></abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jmaa.1995.1051</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 1995-02, Vol.189 (3), p.781-800 |
issn | 0022-247X 1096-0813 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jmaa_1995_1051 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Exact sciences and technology Functions of a complex variable Mathematical analysis Mathematics Real functions Sciences and techniques of general use Special functions |
title | On Certain Extremal Problems for Polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Certain%20Extremal%20Problems%20for%20Polynomials&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Bojanov,%20B.D.&rft.date=1995-02-01&rft.volume=189&rft.issue=3&rft.spage=781&rft.epage=800&rft.pages=781-800&rft.issn=0022-247X&rft.eissn=1096-0813&rft.coden=JMANAK&rft_id=info:doi/10.1006/jmaa.1995.1051&rft_dat=%3Celsevier_cross%3ES0022247X85710517%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X85710517&rfr_iscdi=true |