On Certain Extremal Problems for Polynomials
For a given set of n natural numbers v 1, ..., v n there exists a unique monic polynomial τ∗( x) ≔ Π n j=1 ( x − x* j ) vj , where −1 < x* 1 < ··· < x* n < 1 along with n + 1 points −1 =: t* 0 < t* 1 < ··· < t* n ≔ 1 such that |τ∗( t* k )| = max − 1 ≤ x ≤ 1 |τ∗( x)\ for k = 0, ....
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 1995-02, Vol.189 (3), p.781-800 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a given set of
n natural numbers
v
1, ...,
v
n
there exists a
unique monic polynomial τ∗(
x) ≔ Π
n
j=1
(
x −
x*
j
)
vj
, where −1 <
x*
1 < ··· <
x*
n
< 1 along with
n + 1 points −1 =:
t*
0 <
t*
1 < ··· <
t*
n
≔ 1 such that |τ∗(
t*
k
)| = max
− 1 ≤
x ≤ 1
|τ∗(
x)\ for
k = 0, ...,
n. The polynomial τ∗ is a generalization of the Chebyshev polynomial
T
N
(
x) ≔ cos(
N are cos
x) in the sense that its supremum norm on [−1, 1] is the smallest amongst all polynomials of the form Π
n
j=1
(
x −
x
j
)
vj
, where −1 ≤
x
1 ≤ ··· ≤
x
n
≤ 1. Here, for polynomials of the form
P(
z) ≔
c Π
n
j=1
(
z −
x
j
)
vj
, −1 ≤
x
1 ≤ ··· ≤
x
n
≤ 1, where
v
1,...,
v
n, are prescribed we consider the problems of estimating (i) the
L
p
norm of
P
(
k)
on [−1, 1] for
p ∈ [1, ∞], (ii) |
P
(
k)
(
z)| at an arbitrary point outside the unit disk, given that the supremum norm of
P on [−1, 1] does not exceed that of the (corresponding) generalized Chebyshev polynomial τ∗. It turns out that τ∗ is extremal for both the problems. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1006/jmaa.1995.1051 |