Two-Dimensional Navier–Stokes Equations Driven by a Space–Time White Noise

We study the two-dimensional Navier–Stokes equations with periodic boundary conditions perturbed by a space–time white noise. It is shown that, although the solution is not expected to be smooth, the nonlinear term can be defined without changing the equation. We first construct a stationary marting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2002-12, Vol.196 (1), p.180-210
Hauptverfasser: Da Prato, Giuseppe, Debussche, Arnaud
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the two-dimensional Navier–Stokes equations with periodic boundary conditions perturbed by a space–time white noise. It is shown that, although the solution is not expected to be smooth, the nonlinear term can be defined without changing the equation. We first construct a stationary martingale solution.Then, we prove that, for almost every initial data with respect to a measure supported by negative spaces, there exists a unique global solution in the strong probabilistic sense.
ISSN:0022-1236
1096-0783
DOI:10.1006/jfan.2002.3919