The Jacobson Radical for Analytic Crossed Products

We characterise the Jacobson radical of an analytic crossed product C0(X)×φZ+, answering a question first raised by Arveson and Josephson in 1969. In fact, we characterise the Jacobson radical of analytic crossed products C0(X)×φZd+. This consists of all elements whose “Fourier coefficients” vanish...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2001-12, Vol.187 (1), p.129-145
Hauptverfasser: Donsig, Allan P, Katavolos, Aristides, Manoussos, Antonios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 145
container_issue 1
container_start_page 129
container_title Journal of functional analysis
container_volume 187
creator Donsig, Allan P
Katavolos, Aristides
Manoussos, Antonios
description We characterise the Jacobson radical of an analytic crossed product C0(X)×φZ+, answering a question first raised by Arveson and Josephson in 1969. In fact, we characterise the Jacobson radical of analytic crossed products C0(X)×φZd+. This consists of all elements whose “Fourier coefficients” vanish on the recurrent points of the dynamical system (and the first one is zero). The multidimensional version requires a variation of the notion of recurrence, taking into account the various degrees of freedom.
doi_str_mv 10.1006/jfan.2001.3819
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jfan_2001_3819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022123601938194</els_id><sourcerecordid>S0022123601938194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-f586b8ba067f2f73ff45f4c97afa8ba27e90bf47d01124358ed01373ef1598023</originalsourceid><addsrcrecordid>eNp1j01LxDAQhoMoWFevnvsHWidJm6THZfFjZUGR9RzSJINZaitJFfbfm7JePc0wvO_wPITcUqgpgLg7oBlrBkBrrmh3RgoKnahAKn5OCgDGKsq4uCRXKR1yioqmLQjbf_jy2dipT9NYvhkXrBlKnGK5Hs1wnIMtN3FKybvyNU7u287pmlygGZK_-Zsr8v5wv988VbuXx-1mvassZ2KusFWiV70BIZGh5IhNi43tpEGTz0z6DnpspMsorOGt8nnjknukbaeA8RWpT3_tAhA96q8YPk08agp6MdaLsV6M9WKcC-pU8JnqJ_iokw1-tN6F6O2s3RT-q_4CKvVbuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Jacobson Radical for Analytic Crossed Products</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Donsig, Allan P ; Katavolos, Aristides ; Manoussos, Antonios</creator><creatorcontrib>Donsig, Allan P ; Katavolos, Aristides ; Manoussos, Antonios</creatorcontrib><description>We characterise the Jacobson radical of an analytic crossed product C0(X)×φZ+, answering a question first raised by Arveson and Josephson in 1969. In fact, we characterise the Jacobson radical of analytic crossed products C0(X)×φZd+. This consists of all elements whose “Fourier coefficients” vanish on the recurrent points of the dynamical system (and the first one is zero). The multidimensional version requires a variation of the notion of recurrence, taking into account the various degrees of freedom.</description><identifier>ISSN: 0022-1236</identifier><identifier>EISSN: 1096-0783</identifier><identifier>DOI: 10.1006/jfan.2001.3819</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>analytic crossed products ; Jacobson radical ; recurrence ; semicrossed products ; wandering sets</subject><ispartof>Journal of functional analysis, 2001-12, Vol.187 (1), p.129-145</ispartof><rights>2001 Elsevier Science (USA)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-f586b8ba067f2f73ff45f4c97afa8ba27e90bf47d01124358ed01373ef1598023</citedby><cites>FETCH-LOGICAL-c326t-f586b8ba067f2f73ff45f4c97afa8ba27e90bf47d01124358ed01373ef1598023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jfan.2001.3819$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Donsig, Allan P</creatorcontrib><creatorcontrib>Katavolos, Aristides</creatorcontrib><creatorcontrib>Manoussos, Antonios</creatorcontrib><title>The Jacobson Radical for Analytic Crossed Products</title><title>Journal of functional analysis</title><description>We characterise the Jacobson radical of an analytic crossed product C0(X)×φZ+, answering a question first raised by Arveson and Josephson in 1969. In fact, we characterise the Jacobson radical of analytic crossed products C0(X)×φZd+. This consists of all elements whose “Fourier coefficients” vanish on the recurrent points of the dynamical system (and the first one is zero). The multidimensional version requires a variation of the notion of recurrence, taking into account the various degrees of freedom.</description><subject>analytic crossed products</subject><subject>Jacobson radical</subject><subject>recurrence</subject><subject>semicrossed products</subject><subject>wandering sets</subject><issn>0022-1236</issn><issn>1096-0783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAQhoMoWFevnvsHWidJm6THZfFjZUGR9RzSJINZaitJFfbfm7JePc0wvO_wPITcUqgpgLg7oBlrBkBrrmh3RgoKnahAKn5OCgDGKsq4uCRXKR1yioqmLQjbf_jy2dipT9NYvhkXrBlKnGK5Hs1wnIMtN3FKybvyNU7u287pmlygGZK_-Zsr8v5wv988VbuXx-1mvassZ2KusFWiV70BIZGh5IhNi43tpEGTz0z6DnpspMsorOGt8nnjknukbaeA8RWpT3_tAhA96q8YPk08agp6MdaLsV6M9WKcC-pU8JnqJ_iokw1-tN6F6O2s3RT-q_4CKvVbuw</recordid><startdate>20011201</startdate><enddate>20011201</enddate><creator>Donsig, Allan P</creator><creator>Katavolos, Aristides</creator><creator>Manoussos, Antonios</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20011201</creationdate><title>The Jacobson Radical for Analytic Crossed Products</title><author>Donsig, Allan P ; Katavolos, Aristides ; Manoussos, Antonios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-f586b8ba067f2f73ff45f4c97afa8ba27e90bf47d01124358ed01373ef1598023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>analytic crossed products</topic><topic>Jacobson radical</topic><topic>recurrence</topic><topic>semicrossed products</topic><topic>wandering sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donsig, Allan P</creatorcontrib><creatorcontrib>Katavolos, Aristides</creatorcontrib><creatorcontrib>Manoussos, Antonios</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donsig, Allan P</au><au>Katavolos, Aristides</au><au>Manoussos, Antonios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Jacobson Radical for Analytic Crossed Products</atitle><jtitle>Journal of functional analysis</jtitle><date>2001-12-01</date><risdate>2001</risdate><volume>187</volume><issue>1</issue><spage>129</spage><epage>145</epage><pages>129-145</pages><issn>0022-1236</issn><eissn>1096-0783</eissn><abstract>We characterise the Jacobson radical of an analytic crossed product C0(X)×φZ+, answering a question first raised by Arveson and Josephson in 1969. In fact, we characterise the Jacobson radical of analytic crossed products C0(X)×φZd+. This consists of all elements whose “Fourier coefficients” vanish on the recurrent points of the dynamical system (and the first one is zero). The multidimensional version requires a variation of the notion of recurrence, taking into account the various degrees of freedom.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jfan.2001.3819</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1236
ispartof Journal of functional analysis, 2001-12, Vol.187 (1), p.129-145
issn 0022-1236
1096-0783
language eng
recordid cdi_crossref_primary_10_1006_jfan_2001_3819
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects analytic crossed products
Jacobson radical
recurrence
semicrossed products
wandering sets
title The Jacobson Radical for Analytic Crossed Products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Jacobson%20Radical%20for%20Analytic%20Crossed%20Products&rft.jtitle=Journal%20of%20functional%20analysis&rft.au=Donsig,%20Allan%20P&rft.date=2001-12-01&rft.volume=187&rft.issue=1&rft.spage=129&rft.epage=145&rft.pages=129-145&rft.issn=0022-1236&rft.eissn=1096-0783&rft_id=info:doi/10.1006/jfan.2001.3819&rft_dat=%3Celsevier_cross%3ES0022123601938194%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022123601938194&rfr_iscdi=true