The Jacobson Radical for Analytic Crossed Products
We characterise the Jacobson radical of an analytic crossed product C0(X)×φZ+, answering a question first raised by Arveson and Josephson in 1969. In fact, we characterise the Jacobson radical of analytic crossed products C0(X)×φZd+. This consists of all elements whose “Fourier coefficients” vanish...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2001-12, Vol.187 (1), p.129-145 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We characterise the Jacobson radical of an analytic crossed product C0(X)×φZ+, answering a question first raised by Arveson and Josephson in 1969. In fact, we characterise the Jacobson radical of analytic crossed products C0(X)×φZd+. This consists of all elements whose “Fourier coefficients” vanish on the recurrent points of the dynamical system (and the first one is zero). The multidimensional version requires a variation of the notion of recurrence, taking into account the various degrees of freedom. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1006/jfan.2001.3819 |