The Apostol–Fialkow Formula for Elementary Operators on Banach Spaces
LetA=(A1,…,An) and (B1,…,Bn) ben-tuples of bounded linear operators on a Banach spaceE. The corresponding elementary operator EA,Bis the mapS↦∑ni=1AiSBionL(E), and Ea,bdenotes the induced operators↦∑ni=1aisbion the Calkin algebra C(E)=L(E)/K(E). Heret=T+K(E) forT∈L(E). We establish that ifEhas a 1-u...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 1999-01, Vol.161 (1), p.1-26 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | LetA=(A1,…,An) and (B1,…,Bn) ben-tuples of bounded linear operators on a Banach spaceE. The corresponding elementary operator EA,Bis the mapS↦∑ni=1AiSBionL(E), and Ea,bdenotes the induced operators↦∑ni=1aisbion the Calkin algebra C(E)=L(E)/K(E). Heret=T+K(E) forT∈L(E). We establish that ifEhas a 1-unconditional basis, thendist(Ea,b,W(C(E)))=‖Ea,b‖⩽dist (EA,B,W(L(E))),for all elementary operators EA,BonL(E), whereW(·) stands for the weakly compact operators. There is equality throughout ifE=ℓp, 1 |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1006/jfan.1998.3345 |