The Apostol–Fialkow Formula for Elementary Operators on Banach Spaces

LetA=(A1,…,An) and (B1,…,Bn) ben-tuples of bounded linear operators on a Banach spaceE. The corresponding elementary operator EA,Bis the mapS↦∑ni=1AiSBionL(E), and Ea,bdenotes the induced operators↦∑ni=1aisbion the Calkin algebra C(E)=L(E)/K(E). Heret=T+K(E) forT∈L(E). We establish that ifEhas a 1-u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 1999-01, Vol.161 (1), p.1-26
Hauptverfasser: Saksman, Eero, Tylli, Hans-Olav
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:LetA=(A1,…,An) and (B1,…,Bn) ben-tuples of bounded linear operators on a Banach spaceE. The corresponding elementary operator EA,Bis the mapS↦∑ni=1AiSBionL(E), and Ea,bdenotes the induced operators↦∑ni=1aisbion the Calkin algebra C(E)=L(E)/K(E). Heret=T+K(E) forT∈L(E). We establish that ifEhas a 1-unconditional basis, thendist(Ea,b,W(C(E)))=‖Ea,b‖⩽dist (EA,B,W(L(E))),for all elementary operators EA,BonL(E), whereW(·) stands for the weakly compact operators. There is equality throughout ifE=ℓp, 1
ISSN:0022-1236
1096-0783
DOI:10.1006/jfan.1998.3345