Logarithmic Sobolev Inequalities for Pinned Loop Groups
LetGbe a connected compact type Lie group equipped with anAdG-invariant inner product on the Lie algebra g ofG. Given this data there is a well known left invariant “H1-Riemannian structure” on L=L(G)—the infinite dimensional group of continuous based loops inG. Using this Riemannian structure, we d...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 1996-09, Vol.140 (2), p.381-448 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | LetGbe a connected compact type Lie group equipped with anAdG-invariant inner product on the Lie algebra g ofG. Given this data there is a well known left invariant “H1-Riemannian structure” on L=L(G)—the infinite dimensional group of continuous based loops inG. Using this Riemannian structure, we define and construct a “heat kernel”νT(g0, ·) associated to the Laplace–Beltrami operator on L(G). HereT>0,g0∈L(G), andνT(g0,·) is a certain probability measure on L(G). For fixedg0∈L(G) andT>0, we use the measureνT(g0,·) and the Riemannian structure on L(G) to construct a “classical” pre-Dirichlet form. The main theorem of this paper asserts that this pre-Dirichlet form admits a logarithmic Sobolev inequality. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1006/jfan.1996.0113 |