An Invariant Volume-Mean-Value Property

If ƒ is harmonic and integrable over the open unit disc U then so is ƒ ∘ ψ for every Moebius transformation ψ of U, and therefore 1 π ∫ U (ƒ ∘ ψ) d A = ƒ(ψ(0) for every ψ. Conversely, does this mean-value property imply that ƒ is harmonic? A more general question, with the unit ball B n of C (for ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 1993-02, Vol.111 (2), p.380-397
Hauptverfasser: Ahern, P., Flores, M., Rudin, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue 2
container_start_page 380
container_title Journal of functional analysis
container_volume 111
creator Ahern, P.
Flores, M.
Rudin, W.
description If ƒ is harmonic and integrable over the open unit disc U then so is ƒ ∘ ψ for every Moebius transformation ψ of U, and therefore 1 π ∫ U (ƒ ∘ ψ) d A = ƒ(ψ(0) for every ψ. Conversely, does this mean-value property imply that ƒ is harmonic? A more general question, with the unit ball B n of C (for arbitrary n≥ 1) in place of the disc, is investigated in the present paper. The answer is found to be affirmative if n ≤ 11, negative if n ≤ 12.
doi_str_mv 10.1006/jfan.1993.1018
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jfan_1993_1018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022123683710189</els_id><sourcerecordid>S0022123683710189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-6853f1e9020d5fd1da00d48c73967d82b63b9a4ae2eddd1025a891cf67943f9e3</originalsourceid><addsrcrecordid>eNp1jz1rwzAQhkVpoWnatXOGQie5d5YtS2MI_QiktEObVSjSCRwcO0hOIP--NindOh0H7_PePYzdI2QIIJ-2wbYZai2GFdUFmyBoyaFS4pJNAPKcYy7kNbtJaQuAKItywh7n7WzZHm2sbdvP1l1z2BF_J9vytW0ONPuM3Z5if7plV8E2ie5-55R9vzx_Ld746uN1uZivuBNl1XOpShGQNOTgy-DRWwBfKFcJLSuv8o0UG20LSzl57xHy0iqNLshKFyJoElOWnXtd7FKKFMw-1jsbTwbBjJpm1DSjphk1B-DhDOxtcrYJ0bauTn9UIStUWA4xdY7R8PyxpmiSq6l15OtIrje-q_-78AMPOmSN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Invariant Volume-Mean-Value Property</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ahern, P. ; Flores, M. ; Rudin, W.</creator><creatorcontrib>Ahern, P. ; Flores, M. ; Rudin, W.</creatorcontrib><description>If ƒ is harmonic and integrable over the open unit disc U then so is ƒ ∘ ψ for every Moebius transformation ψ of U, and therefore 1 π ∫ U (ƒ ∘ ψ) d A = ƒ(ψ(0) for every ψ. Conversely, does this mean-value property imply that ƒ is harmonic? A more general question, with the unit ball B n of C (for arbitrary n≥ 1) in place of the disc, is investigated in the present paper. The answer is found to be affirmative if n ≤ 11, negative if n ≤ 12.</description><identifier>ISSN: 0022-1236</identifier><identifier>EISSN: 1096-0783</identifier><identifier>DOI: 10.1006/jfan.1993.1018</identifier><identifier>CODEN: JFUAAW</identifier><language>eng</language><publisher>Orlando, FL: Elsevier Inc</publisher><subject>Exact sciences and technology ; Mathematical analysis ; Mathematics ; Potential theory ; Sciences and techniques of general use</subject><ispartof>Journal of functional analysis, 1993-02, Vol.111 (2), p.380-397</ispartof><rights>1993 Academic Press</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-6853f1e9020d5fd1da00d48c73967d82b63b9a4ae2eddd1025a891cf67943f9e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jfan.1993.1018$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4671815$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahern, P.</creatorcontrib><creatorcontrib>Flores, M.</creatorcontrib><creatorcontrib>Rudin, W.</creatorcontrib><title>An Invariant Volume-Mean-Value Property</title><title>Journal of functional analysis</title><description>If ƒ is harmonic and integrable over the open unit disc U then so is ƒ ∘ ψ for every Moebius transformation ψ of U, and therefore 1 π ∫ U (ƒ ∘ ψ) d A = ƒ(ψ(0) for every ψ. Conversely, does this mean-value property imply that ƒ is harmonic? A more general question, with the unit ball B n of C (for arbitrary n≥ 1) in place of the disc, is investigated in the present paper. The answer is found to be affirmative if n ≤ 11, negative if n ≤ 12.</description><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Potential theory</subject><subject>Sciences and techniques of general use</subject><issn>0022-1236</issn><issn>1096-0783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1jz1rwzAQhkVpoWnatXOGQie5d5YtS2MI_QiktEObVSjSCRwcO0hOIP--NindOh0H7_PePYzdI2QIIJ-2wbYZai2GFdUFmyBoyaFS4pJNAPKcYy7kNbtJaQuAKItywh7n7WzZHm2sbdvP1l1z2BF_J9vytW0ONPuM3Z5if7plV8E2ie5-55R9vzx_Ld746uN1uZivuBNl1XOpShGQNOTgy-DRWwBfKFcJLSuv8o0UG20LSzl57xHy0iqNLshKFyJoElOWnXtd7FKKFMw-1jsbTwbBjJpm1DSjphk1B-DhDOxtcrYJ0bauTn9UIStUWA4xdY7R8PyxpmiSq6l15OtIrje-q_-78AMPOmSN</recordid><startdate>19930201</startdate><enddate>19930201</enddate><creator>Ahern, P.</creator><creator>Flores, M.</creator><creator>Rudin, W.</creator><general>Elsevier Inc</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930201</creationdate><title>An Invariant Volume-Mean-Value Property</title><author>Ahern, P. ; Flores, M. ; Rudin, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-6853f1e9020d5fd1da00d48c73967d82b63b9a4ae2eddd1025a891cf67943f9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Potential theory</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahern, P.</creatorcontrib><creatorcontrib>Flores, M.</creatorcontrib><creatorcontrib>Rudin, W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahern, P.</au><au>Flores, M.</au><au>Rudin, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Invariant Volume-Mean-Value Property</atitle><jtitle>Journal of functional analysis</jtitle><date>1993-02-01</date><risdate>1993</risdate><volume>111</volume><issue>2</issue><spage>380</spage><epage>397</epage><pages>380-397</pages><issn>0022-1236</issn><eissn>1096-0783</eissn><coden>JFUAAW</coden><abstract>If ƒ is harmonic and integrable over the open unit disc U then so is ƒ ∘ ψ for every Moebius transformation ψ of U, and therefore 1 π ∫ U (ƒ ∘ ψ) d A = ƒ(ψ(0) for every ψ. Conversely, does this mean-value property imply that ƒ is harmonic? A more general question, with the unit ball B n of C (for arbitrary n≥ 1) in place of the disc, is investigated in the present paper. The answer is found to be affirmative if n ≤ 11, negative if n ≤ 12.</abstract><cop>Orlando, FL</cop><cop>San Diego, CA</cop><cop>Brugge</cop><pub>Elsevier Inc</pub><doi>10.1006/jfan.1993.1018</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1236
ispartof Journal of functional analysis, 1993-02, Vol.111 (2), p.380-397
issn 0022-1236
1096-0783
language eng
recordid cdi_crossref_primary_10_1006_jfan_1993_1018
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Exact sciences and technology
Mathematical analysis
Mathematics
Potential theory
Sciences and techniques of general use
title An Invariant Volume-Mean-Value Property
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Invariant%20Volume-Mean-Value%20Property&rft.jtitle=Journal%20of%20functional%20analysis&rft.au=Ahern,%20P.&rft.date=1993-02-01&rft.volume=111&rft.issue=2&rft.spage=380&rft.epage=397&rft.pages=380-397&rft.issn=0022-1236&rft.eissn=1096-0783&rft.coden=JFUAAW&rft_id=info:doi/10.1006/jfan.1993.1018&rft_dat=%3Celsevier_cross%3ES0022123683710189%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022123683710189&rfr_iscdi=true