An Invariant Volume-Mean-Value Property
If ƒ is harmonic and integrable over the open unit disc U then so is ƒ ∘ ψ for every Moebius transformation ψ of U, and therefore 1 π ∫ U (ƒ ∘ ψ) d A = ƒ(ψ(0) for every ψ. Conversely, does this mean-value property imply that ƒ is harmonic? A more general question, with the unit ball B n of C (for ar...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 1993-02, Vol.111 (2), p.380-397 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If ƒ is harmonic and integrable over the open unit disc
U then so is ƒ ∘ ψ for every Moebius transformation ψ of
U, and therefore
1
π
∫
U (ƒ ∘ ψ) d A = ƒ(ψ(0)
for every ψ. Conversely, does this mean-value property imply that ƒ is harmonic? A more general question, with the unit ball
B
n
of
C
(for arbitrary
n≥ 1) in place of the disc, is investigated in the present paper. The answer is found to be affirmative if
n ≤ 11, negative if
n ≤ 12. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1006/jfan.1993.1018 |