Discreteness of the Spectrum of Second-Order Differential Operators and Associated Embedding Theorems
Necessary and sufficient conditions and also simple sufficient conditions are given for the self-adjoint operators associated with the second-order linear differential expression τ(y)= 1 w (−(py′)′+qy) on [ a, b) to have discrete spectrum. Here the coefficients of τ are non-negative and satisfy mini...
Gespeichert in:
Veröffentlicht in: | Journal of Differential Equations 2002-09, Vol.184 (2), p.526-548 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Necessary and sufficient conditions and also simple sufficient conditions are given for the self-adjoint operators associated with the second-order linear differential expression
τ(y)=
1
w
(−(py′)′+qy)
on [
a,
b) to have discrete spectrum. Here the coefficients of
τ are non-negative and satisfy minimal smoothness conditions. These results follow from compact embedding theorems from a weighted one-dimensional Sobolev space with norm∫
a
b
(
p∣
f′∣
r
+
q∣
f∣
r
))
1/
r
into a weighted Banach space with norm(∫
a
b
w∣
f∣
s
)
1/
s
. |
---|---|
ISSN: | 0022-0396 1090-2732 |
DOI: | 10.1006/jdeq.2001.4152 |