Discreteness of the Spectrum of Second-Order Differential Operators and Associated Embedding Theorems

Necessary and sufficient conditions and also simple sufficient conditions are given for the self-adjoint operators associated with the second-order linear differential expression τ(y)= 1 w (−(py′)′+qy) on [ a, b) to have discrete spectrum. Here the coefficients of τ are non-negative and satisfy mini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations 2002-09, Vol.184 (2), p.526-548
Hauptverfasser: Ćurgus, Branko, Read, Thomas T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Necessary and sufficient conditions and also simple sufficient conditions are given for the self-adjoint operators associated with the second-order linear differential expression τ(y)= 1 w (−(py′)′+qy) on [ a, b) to have discrete spectrum. Here the coefficients of τ are non-negative and satisfy minimal smoothness conditions. These results follow from compact embedding theorems from a weighted one-dimensional Sobolev space with norm∫ a b ( p∣ f′∣ r + q∣ f∣ r )) 1/ r into a weighted Banach space with norm(∫ a b w∣ f∣ s ) 1/ s .
ISSN:0022-0396
1090-2732
DOI:10.1006/jdeq.2001.4152