Relaxation Oscillation and Canard Explosion

We give a geometric analysis of relaxation oscillations and canard cycles in singularly perturbed planar vector fields. The transition from small Hopf-type cycles to large relaxation cycles, which occurs in an exponentially thin parameter interval, is described as a perturbation of a family of singu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations 2001-08, Vol.174 (2), p.312-368
Hauptverfasser: Krupa, M., Szmolyan, P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a geometric analysis of relaxation oscillations and canard cycles in singularly perturbed planar vector fields. The transition from small Hopf-type cycles to large relaxation cycles, which occurs in an exponentially thin parameter interval, is described as a perturbation of a family of singular cycles. The results are obtained by means of two blow-up transformations combined with standard tools of dynamical systems theory. The efficient use of various charts is emphasized. The results are applied to the van der Pol equation.
ISSN:0022-0396
1090-2732
DOI:10.1006/jdeq.2000.3929