Nonclassical Shocks and the Cauchy Problem for Nonconvex Conservation Laws

The Riemann problem for a conservation law with a nonconvex (cubic) flux can be solved in a class of admissible nonclassical solutions that may violate the Oleinik entropy condition but satisfy a single entropy inequality and a kinetic relation. We use such a nonclassical Riemann solver in a front t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations 1999-01, Vol.151 (2), p.345-372
Hauptverfasser: Amadori, D., Baiti, P., LeFloch, P.G., Piccoli, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Riemann problem for a conservation law with a nonconvex (cubic) flux can be solved in a class of admissible nonclassical solutions that may violate the Oleinik entropy condition but satisfy a single entropy inequality and a kinetic relation. We use such a nonclassical Riemann solver in a front tracking algorithm, and prove that the approximate solutions remain bounded in the total variation norm. The nonclassical shocks induce an increase of the total variation and, therefore, the classical measure of total variation must be modified accordingly. We prove that the front tracking scheme converges strongly to a weak solution satisfying the entropy inequality.
ISSN:0022-0396
1090-2732
DOI:10.1006/jdeq.1998.3513