Stability in a Semilinear Boundary Value Problem via Invariant Conefields
We give a geometric proof of stability for spatially nonhomogeneous equilibria in the singular perturbation problemut=ε2uxx+f(x,u),t∈R+, −1⩽u⩽1, with the Neumann boundary conditions onx∈[0,1]. The nonlinearity is of the formf(x,u)≔(1−u2)(u−c(x)), wherec(x) is merely continuous with a finite number o...
Gespeichert in:
Veröffentlicht in: | Journal of Differential Equations 1997-11, Vol.141 (1), p.86-101 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a geometric proof of stability for spatially nonhomogeneous equilibria in the singular perturbation problemut=ε2uxx+f(x,u),t∈R+, −1⩽u⩽1, with the Neumann boundary conditions onx∈[0,1]. The nonlinearity is of the formf(x,u)≔(1−u2)(u−c(x)), wherec(x) is merely continuous with a finite number of zeros. The strength of the method is in dealing with non-transversal zeros ofc, the case escaping the existing techniques of singular perturbations. The approach is also used for showing existence of unstable equilibria with one transition layer. |
---|---|
ISSN: | 0022-0396 1090-2732 |
DOI: | 10.1006/jdeq.1997.3319 |