Stability in a Semilinear Boundary Value Problem via Invariant Conefields

We give a geometric proof of stability for spatially nonhomogeneous equilibria in the singular perturbation problemut=ε2uxx+f(x,u),t∈R+, −1⩽u⩽1, with the Neumann boundary conditions onx∈[0,1]. The nonlinearity is of the formf(x,u)≔(1−u2)(u−c(x)), wherec(x) is merely continuous with a finite number o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations 1997-11, Vol.141 (1), p.86-101
1. Verfasser: Kwapisz, Jaroslaw
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a geometric proof of stability for spatially nonhomogeneous equilibria in the singular perturbation problemut=ε2uxx+f(x,u),t∈R+, −1⩽u⩽1, with the Neumann boundary conditions onx∈[0,1]. The nonlinearity is of the formf(x,u)≔(1−u2)(u−c(x)), wherec(x) is merely continuous with a finite number of zeros. The strength of the method is in dealing with non-transversal zeros ofc, the case escaping the existing techniques of singular perturbations. The approach is also used for showing existence of unstable equilibria with one transition layer.
ISSN:0022-0396
1090-2732
DOI:10.1006/jdeq.1997.3319