Singularities of a Variational Wave Equation

We analyze several aspects of the singular behavior of solutions of a variational nonlinear wave equation which models orientation waves in a massive nematic liquid crystal director field. We prove that smooth solutions develop singularities in finite time. We construct exact travelling wave solutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations 1996-07, Vol.129 (1), p.49-78
Hauptverfasser: Glassey, Robert T., Hunter, John K., Zheng, Yuxi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze several aspects of the singular behavior of solutions of a variational nonlinear wave equation which models orientation waves in a massive nematic liquid crystal director field. We prove that smooth solutions develop singularities in finite time. We construct exact travelling wave solutions with cusp singularities, and use them to illustrate a phenomena of accumulation and annihilation of oscillations in sequences of solutions with bounded energy. We also prove that constant solutions of the equation are nonlinearly unstable.
ISSN:0022-0396
1090-2732
DOI:10.1006/jdeq.1996.0111