Branch-Width and Well-Quasi-Ordering in Matroids and Graphs

We prove that a class of matroids representable over a fixed finite field and with bounded branch-width is well-quasi-ordered under taking minors. With some extra work, the result implies Robertson and Seymour's result that graphs with bounded tree-width (or equivalently, bounded branch-width)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series B 2002-03, Vol.84 (2), p.270-290
Hauptverfasser: Geelen, James F., Gerards, A.M.H., Whittle, Geoff
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue 2
container_start_page 270
container_title Journal of combinatorial theory. Series B
container_volume 84
creator Geelen, James F.
Gerards, A.M.H.
Whittle, Geoff
description We prove that a class of matroids representable over a fixed finite field and with bounded branch-width is well-quasi-ordered under taking minors. With some extra work, the result implies Robertson and Seymour's result that graphs with bounded tree-width (or equivalently, bounded branch-width) are well-quasi-ordered under taking minors. We will not only derive their result from our result on matroids, but we will also use the main tools for a direct proof that graphs with bounded branch-width are well-quasi-ordered under taking minors. This proof also provides a model for the proof of the result on matroids, with all specific matroid technicalities stripped off.
doi_str_mv 10.1006/jctb.2001.2082
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jctb_2001_2082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0095895601920829</els_id><sourcerecordid>S0095895601920829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-37da5a49818952ba9d57c333ccc845bbe494efef814504551843a2040a9b6723</originalsourceid><addsrcrecordid>eNp1j01LxDAQhoMoWFevnvsHUidfbYInXXQVVhZhYY8hTVKbpbZLUgX_ve2uVy8zl3nmfR-EbgkUBKC829uxLigAmYakZygjoEoMCug5ygCUwFKJ8hJdpbQHAMYqmaH7x2h62-JdcGObm97lO991-P3LpIA30fkY-o889PmbGeMQXDrerKI5tOkaXTSmS_7mby_Q9vlpu3zB683qdfmwxpYpOmJWOSMMV5JM-bQ2yonKMsastZKLuvZccd_4RhIugAtBJGeGAgej6rKibIGK01sbh5Sib_Qhhk8TfzQBPZvr2VzP5no2nwB5AvxU6jv4qJMNvrfehejtqN0Q_kN_AR4xXew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Branch-Width and Well-Quasi-Ordering in Matroids and Graphs</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Geelen, James F. ; Gerards, A.M.H. ; Whittle, Geoff</creator><creatorcontrib>Geelen, James F. ; Gerards, A.M.H. ; Whittle, Geoff</creatorcontrib><description>We prove that a class of matroids representable over a fixed finite field and with bounded branch-width is well-quasi-ordered under taking minors. With some extra work, the result implies Robertson and Seymour's result that graphs with bounded tree-width (or equivalently, bounded branch-width) are well-quasi-ordered under taking minors. We will not only derive their result from our result on matroids, but we will also use the main tools for a direct proof that graphs with bounded branch-width are well-quasi-ordered under taking minors. This proof also provides a model for the proof of the result on matroids, with all specific matroid technicalities stripped off.</description><identifier>ISSN: 0095-8956</identifier><identifier>EISSN: 1096-0902</identifier><identifier>DOI: 10.1006/jctb.2001.2082</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>branch-width ; connectivity ; finite fields ; graphs ; matroids ; minors ; submodularity ; tree-width ; well-quasi-ordering</subject><ispartof>Journal of combinatorial theory. Series B, 2002-03, Vol.84 (2), p.270-290</ispartof><rights>2002 Elsevier Science (USA)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-37da5a49818952ba9d57c333ccc845bbe494efef814504551843a2040a9b6723</citedby><cites>FETCH-LOGICAL-c392t-37da5a49818952ba9d57c333ccc845bbe494efef814504551843a2040a9b6723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jctb.2001.2082$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Geelen, James F.</creatorcontrib><creatorcontrib>Gerards, A.M.H.</creatorcontrib><creatorcontrib>Whittle, Geoff</creatorcontrib><title>Branch-Width and Well-Quasi-Ordering in Matroids and Graphs</title><title>Journal of combinatorial theory. Series B</title><description>We prove that a class of matroids representable over a fixed finite field and with bounded branch-width is well-quasi-ordered under taking minors. With some extra work, the result implies Robertson and Seymour's result that graphs with bounded tree-width (or equivalently, bounded branch-width) are well-quasi-ordered under taking minors. We will not only derive their result from our result on matroids, but we will also use the main tools for a direct proof that graphs with bounded branch-width are well-quasi-ordered under taking minors. This proof also provides a model for the proof of the result on matroids, with all specific matroid technicalities stripped off.</description><subject>branch-width</subject><subject>connectivity</subject><subject>finite fields</subject><subject>graphs</subject><subject>matroids</subject><subject>minors</subject><subject>submodularity</subject><subject>tree-width</subject><subject>well-quasi-ordering</subject><issn>0095-8956</issn><issn>1096-0902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAQhoMoWFevnvsHUidfbYInXXQVVhZhYY8hTVKbpbZLUgX_ve2uVy8zl3nmfR-EbgkUBKC829uxLigAmYakZygjoEoMCug5ygCUwFKJ8hJdpbQHAMYqmaH7x2h62-JdcGObm97lO991-P3LpIA30fkY-o889PmbGeMQXDrerKI5tOkaXTSmS_7mby_Q9vlpu3zB683qdfmwxpYpOmJWOSMMV5JM-bQ2yonKMsastZKLuvZccd_4RhIugAtBJGeGAgej6rKibIGK01sbh5Sib_Qhhk8TfzQBPZvr2VzP5no2nwB5AvxU6jv4qJMNvrfehejtqN0Q_kN_AR4xXew</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Geelen, James F.</creator><creator>Gerards, A.M.H.</creator><creator>Whittle, Geoff</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020301</creationdate><title>Branch-Width and Well-Quasi-Ordering in Matroids and Graphs</title><author>Geelen, James F. ; Gerards, A.M.H. ; Whittle, Geoff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-37da5a49818952ba9d57c333ccc845bbe494efef814504551843a2040a9b6723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>branch-width</topic><topic>connectivity</topic><topic>finite fields</topic><topic>graphs</topic><topic>matroids</topic><topic>minors</topic><topic>submodularity</topic><topic>tree-width</topic><topic>well-quasi-ordering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geelen, James F.</creatorcontrib><creatorcontrib>Gerards, A.M.H.</creatorcontrib><creatorcontrib>Whittle, Geoff</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of combinatorial theory. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geelen, James F.</au><au>Gerards, A.M.H.</au><au>Whittle, Geoff</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Branch-Width and Well-Quasi-Ordering in Matroids and Graphs</atitle><jtitle>Journal of combinatorial theory. Series B</jtitle><date>2002-03-01</date><risdate>2002</risdate><volume>84</volume><issue>2</issue><spage>270</spage><epage>290</epage><pages>270-290</pages><issn>0095-8956</issn><eissn>1096-0902</eissn><abstract>We prove that a class of matroids representable over a fixed finite field and with bounded branch-width is well-quasi-ordered under taking minors. With some extra work, the result implies Robertson and Seymour's result that graphs with bounded tree-width (or equivalently, bounded branch-width) are well-quasi-ordered under taking minors. We will not only derive their result from our result on matroids, but we will also use the main tools for a direct proof that graphs with bounded branch-width are well-quasi-ordered under taking minors. This proof also provides a model for the proof of the result on matroids, with all specific matroid technicalities stripped off.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jctb.2001.2082</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0095-8956
ispartof Journal of combinatorial theory. Series B, 2002-03, Vol.84 (2), p.270-290
issn 0095-8956
1096-0902
language eng
recordid cdi_crossref_primary_10_1006_jctb_2001_2082
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects branch-width
connectivity
finite fields
graphs
matroids
minors
submodularity
tree-width
well-quasi-ordering
title Branch-Width and Well-Quasi-Ordering in Matroids and Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Branch-Width%20and%20Well-Quasi-Ordering%20in%20Matroids%20and%20Graphs&rft.jtitle=Journal%20of%20combinatorial%20theory.%20Series%20B&rft.au=Geelen,%20James%20F.&rft.date=2002-03-01&rft.volume=84&rft.issue=2&rft.spage=270&rft.epage=290&rft.pages=270-290&rft.issn=0095-8956&rft.eissn=1096-0902&rft_id=info:doi/10.1006/jctb.2001.2082&rft_dat=%3Celsevier_cross%3ES0095895601920829%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0095895601920829&rfr_iscdi=true