Branch-Width and Well-Quasi-Ordering in Matroids and Graphs
We prove that a class of matroids representable over a fixed finite field and with bounded branch-width is well-quasi-ordered under taking minors. With some extra work, the result implies Robertson and Seymour's result that graphs with bounded tree-width (or equivalently, bounded branch-width)...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series B 2002-03, Vol.84 (2), p.270-290 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that a class of matroids representable over a fixed finite field and with bounded branch-width is well-quasi-ordered under taking minors. With some extra work, the result implies Robertson and Seymour's result that graphs with bounded tree-width (or equivalently, bounded branch-width) are well-quasi-ordered under taking minors. We will not only derive their result from our result on matroids, but we will also use the main tools for a direct proof that graphs with bounded branch-width are well-quasi-ordered under taking minors. This proof also provides a model for the proof of the result on matroids, with all specific matroid technicalities stripped off. |
---|---|
ISSN: | 0095-8956 1096-0902 |
DOI: | 10.1006/jctb.2001.2082 |