The Maximum Size of 3-Uniform Hypergraphs Not Containing a Fano Plane
A conjecture of V. Sós [3] is proved that any set of 34 (n3)+cn2 triples from an n-set, where c is a suitable absolute constant, must contain a copy of the Fano configuration (the projective plane of order two). This is an asymptotically sharp estimate.
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series B 2000-03, Vol.78 (2), p.274-276 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A conjecture of V. Sós [3] is proved that any set of 34 (n3)+cn2 triples from an n-set, where c is a suitable absolute constant, must contain a copy of the Fano configuration (the projective plane of order two). This is an asymptotically sharp estimate. |
---|---|
ISSN: | 0095-8956 1096-0902 |
DOI: | 10.1006/jctb.1999.1938 |