The Maximum Size of 3-Uniform Hypergraphs Not Containing a Fano Plane

A conjecture of V. Sós [3] is proved that any set of 34 (n3)+cn2 triples from an n-set, where c is a suitable absolute constant, must contain a copy of the Fano configuration (the projective plane of order two). This is an asymptotically sharp estimate.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series B 2000-03, Vol.78 (2), p.274-276
Hauptverfasser: De Caen, Dominique, Füredi, Zoltán
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A conjecture of V. Sós [3] is proved that any set of 34 (n3)+cn2 triples from an n-set, where c is a suitable absolute constant, must contain a copy of the Fano configuration (the projective plane of order two). This is an asymptotically sharp estimate.
ISSN:0095-8956
1096-0902
DOI:10.1006/jctb.1999.1938