Graphs with a Cycle of Length Divisible by Three
In this paper, we will prove that every graph G with minimum degree δ(G) ≥ 3 contains a cycle of length divisible by three. This was conjectured to be true by Barefoot, Clark, Douthett, and Entringer.
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series B 1994-03, Vol.60 (2), p.277-292 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we will prove that every graph G with minimum degree δ(G) ≥ 3 contains a cycle of length divisible by three. This was conjectured to be true by Barefoot, Clark, Douthett, and Entringer. |
---|---|
ISSN: | 0095-8956 1096-0902 |
DOI: | 10.1006/jctb.1994.1019 |