Graphs with a Cycle of Length Divisible by Three

In this paper, we will prove that every graph G with minimum degree δ(G) ≥ 3 contains a cycle of length divisible by three. This was conjectured to be true by Barefoot, Clark, Douthett, and Entringer.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series B 1994-03, Vol.60 (2), p.277-292
Hauptverfasser: Chen, G.T., Saito, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we will prove that every graph G with minimum degree δ(G) ≥ 3 contains a cycle of length divisible by three. This was conjectured to be true by Barefoot, Clark, Douthett, and Entringer.
ISSN:0095-8956
1096-0902
DOI:10.1006/jctb.1994.1019