The Number of Vertices of Degree k in a Minimally k-Edge-Connected Graph

Let G be a minimally k-edge-connected simple graph and u(G) be the number of vertices of degree k in G. It is proved that (i) u(G) ≥ ((2k - 1)/2(2k + 3)) |G| + (14k + l)/2(2k+3) for even k ≥ 6 and u(G) ≥ |G|/4 + 13/4 for k = 4, and (ii) u(G) ≥ ((2k − 1)/2(2k + 5)) |G| + (10k + l)/(2k + 5) for odd k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series B 1993-07, Vol.58 (2), p.225-239
1. Verfasser: Cai, M.C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 2
container_start_page 225
container_title Journal of combinatorial theory. Series B
container_volume 58
creator Cai, M.C.
description Let G be a minimally k-edge-connected simple graph and u(G) be the number of vertices of degree k in G. It is proved that (i) u(G) ≥ ((2k - 1)/2(2k + 3)) |G| + (14k + l)/2(2k+3) for even k ≥ 6 and u(G) ≥ |G|/4 + 13/4 for k = 4, and (ii) u(G) ≥ ((2k − 1)/2(2k + 5)) |G| + (10k + l)/(2k + 5) for odd k ≥ 7 and u(G) ≥ |G|/5 + 24/5 for k = 5, where |G| denotes the number of vertices of G.
doi_str_mv 10.1006/jctb.1993.1039
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jctb_1993_1039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0095895683710397</els_id><sourcerecordid>S0095895683710397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-e2caa91f0d51a3aecc525da88f15f8c7917be1d40d04db23104c0c0209d32bc63</originalsourceid><addsrcrecordid>eNp1kD1PwzAQQC0EEqWwMvsPuJztJo1HVEqLVGAprJZzvrTuR1LZAan_vonKynR3wzs9PcYeJYwkQP60xbYcSWN0d2pzxQYSTC7AgLpmAwCTicJk-S27S2kLAFpPigFbrDbEP34OJUXeVPybYhuQUr-_0DoS8R0PNXf8PdTh4Pb7E9-JmV-TmDZ1TdiS5_Pojpt7dlO5faKHvzlkX6-z1XQhlp_zt-nzUqA2qhWk0DkjK_CZdNoRYqYy74qikllV4MTISUnSj8HD2JdKSxgjICgwXqsScz1ko8tfjE1KkSp7jJ1YPFkJtu9g-w6272D7Dh1QXADqrH4DRZswUI3kQ-z8rW_Cf-gZMZ5jcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Number of Vertices of Degree k in a Minimally k-Edge-Connected Graph</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cai, M.C.</creator><creatorcontrib>Cai, M.C.</creatorcontrib><description>Let G be a minimally k-edge-connected simple graph and u(G) be the number of vertices of degree k in G. It is proved that (i) u(G) ≥ ((2k - 1)/2(2k + 3)) |G| + (14k + l)/2(2k+3) for even k ≥ 6 and u(G) ≥ |G|/4 + 13/4 for k = 4, and (ii) u(G) ≥ ((2k − 1)/2(2k + 5)) |G| + (10k + l)/(2k + 5) for odd k ≥ 7 and u(G) ≥ |G|/5 + 24/5 for k = 5, where |G| denotes the number of vertices of G.</description><identifier>ISSN: 0095-8956</identifier><identifier>EISSN: 1096-0902</identifier><identifier>DOI: 10.1006/jctb.1993.1039</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of combinatorial theory. Series B, 1993-07, Vol.58 (2), p.225-239</ispartof><rights>1993 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-e2caa91f0d51a3aecc525da88f15f8c7917be1d40d04db23104c0c0209d32bc63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jctb.1993.1039$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cai, M.C.</creatorcontrib><title>The Number of Vertices of Degree k in a Minimally k-Edge-Connected Graph</title><title>Journal of combinatorial theory. Series B</title><description>Let G be a minimally k-edge-connected simple graph and u(G) be the number of vertices of degree k in G. It is proved that (i) u(G) ≥ ((2k - 1)/2(2k + 3)) |G| + (14k + l)/2(2k+3) for even k ≥ 6 and u(G) ≥ |G|/4 + 13/4 for k = 4, and (ii) u(G) ≥ ((2k − 1)/2(2k + 5)) |G| + (10k + l)/(2k + 5) for odd k ≥ 7 and u(G) ≥ |G|/5 + 24/5 for k = 5, where |G| denotes the number of vertices of G.</description><issn>0095-8956</issn><issn>1096-0902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQQC0EEqWwMvsPuJztJo1HVEqLVGAprJZzvrTuR1LZAan_vonKynR3wzs9PcYeJYwkQP60xbYcSWN0d2pzxQYSTC7AgLpmAwCTicJk-S27S2kLAFpPigFbrDbEP34OJUXeVPybYhuQUr-_0DoS8R0PNXf8PdTh4Pb7E9-JmV-TmDZ1TdiS5_Pojpt7dlO5faKHvzlkX6-z1XQhlp_zt-nzUqA2qhWk0DkjK_CZdNoRYqYy74qikllV4MTISUnSj8HD2JdKSxgjICgwXqsScz1ko8tfjE1KkSp7jJ1YPFkJtu9g-w6272D7Dh1QXADqrH4DRZswUI3kQ-z8rW_Cf-gZMZ5jcA</recordid><startdate>19930701</startdate><enddate>19930701</enddate><creator>Cai, M.C.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930701</creationdate><title>The Number of Vertices of Degree k in a Minimally k-Edge-Connected Graph</title><author>Cai, M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-e2caa91f0d51a3aecc525da88f15f8c7917be1d40d04db23104c0c0209d32bc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, M.C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of combinatorial theory. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, M.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Number of Vertices of Degree k in a Minimally k-Edge-Connected Graph</atitle><jtitle>Journal of combinatorial theory. Series B</jtitle><date>1993-07-01</date><risdate>1993</risdate><volume>58</volume><issue>2</issue><spage>225</spage><epage>239</epage><pages>225-239</pages><issn>0095-8956</issn><eissn>1096-0902</eissn><abstract>Let G be a minimally k-edge-connected simple graph and u(G) be the number of vertices of degree k in G. It is proved that (i) u(G) ≥ ((2k - 1)/2(2k + 3)) |G| + (14k + l)/2(2k+3) for even k ≥ 6 and u(G) ≥ |G|/4 + 13/4 for k = 4, and (ii) u(G) ≥ ((2k − 1)/2(2k + 5)) |G| + (10k + l)/(2k + 5) for odd k ≥ 7 and u(G) ≥ |G|/5 + 24/5 for k = 5, where |G| denotes the number of vertices of G.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jctb.1993.1039</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0095-8956
ispartof Journal of combinatorial theory. Series B, 1993-07, Vol.58 (2), p.225-239
issn 0095-8956
1096-0902
language eng
recordid cdi_crossref_primary_10_1006_jctb_1993_1039
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
title The Number of Vertices of Degree k in a Minimally k-Edge-Connected Graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A23%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Number%20of%20Vertices%20of%20Degree%20k%20in%20a%20Minimally%20k-Edge-Connected%20Graph&rft.jtitle=Journal%20of%20combinatorial%20theory.%20Series%20B&rft.au=Cai,%20M.C.&rft.date=1993-07-01&rft.volume=58&rft.issue=2&rft.spage=225&rft.epage=239&rft.pages=225-239&rft.issn=0095-8956&rft.eissn=1096-0902&rft_id=info:doi/10.1006/jctb.1993.1039&rft_dat=%3Celsevier_cross%3ES0095895683710397%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0095895683710397&rfr_iscdi=true