The Number of Vertices of Degree k in a Minimally k-Edge-Connected Graph
Let G be a minimally k-edge-connected simple graph and u(G) be the number of vertices of degree k in G. It is proved that (i) u(G) ≥ ((2k - 1)/2(2k + 3)) |G| + (14k + l)/2(2k+3) for even k ≥ 6 and u(G) ≥ |G|/4 + 13/4 for k = 4, and (ii) u(G) ≥ ((2k − 1)/2(2k + 5)) |G| + (10k + l)/(2k + 5) for odd k...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series B 1993-07, Vol.58 (2), p.225-239 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a minimally k-edge-connected simple graph and u(G) be the number of vertices of degree k in G. It is proved that (i) u(G) ≥ ((2k - 1)/2(2k + 3)) |G| + (14k + l)/2(2k+3) for even k ≥ 6 and u(G) ≥ |G|/4 + 13/4 for k = 4, and (ii) u(G) ≥ ((2k − 1)/2(2k + 5)) |G| + (10k + l)/(2k + 5) for odd k ≥ 7 and u(G) ≥ |G|/5 + 24/5 for k = 5, where |G| denotes the number of vertices of G. |
---|---|
ISSN: | 0095-8956 1096-0902 |
DOI: | 10.1006/jctb.1993.1039 |