Maximal Sets of 2-Factors and Hamiltonian Cycles
In this paper we find, for each integer d, the smallest d-regular graphs which contain no d′-regular subgraphs, 0 > d′ > d. We then find the set of integers Sp 2( n) = { m: there exists a maximal set of m edge-disjoint 2-factors of K n }, as well as Sp H 2( n) = { m: there exists a maximal set...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series B 1993, Vol.57 (1), p.69-76 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we find, for each integer
d, the smallest
d-regular graphs which contain no
d′-regular subgraphs, 0 >
d′ >
d. We then find the set of integers Sp
2(
n) = {
m: there exists a maximal set of
m edge-disjoint 2-factors of
K
n
}, as well as Sp
H
2(
n) = {
m: there exists a maximal set of
m edge-disjoint Hamiltonian cycles of
K
n
}. |
---|---|
ISSN: | 0095-8956 1096-0902 |
DOI: | 10.1006/jctb.1993.1006 |