Maximal Sets of 2-Factors and Hamiltonian Cycles

In this paper we find, for each integer d, the smallest d-regular graphs which contain no d′-regular subgraphs, 0 > d′ > d. We then find the set of integers Sp 2( n) = { m: there exists a maximal set of m edge-disjoint 2-factors of K n }, as well as Sp H 2( n) = { m: there exists a maximal set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series B 1993, Vol.57 (1), p.69-76
Hauptverfasser: Hoffman, D.G., Rodger, C.A., Rosa, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we find, for each integer d, the smallest d-regular graphs which contain no d′-regular subgraphs, 0 > d′ > d. We then find the set of integers Sp 2( n) = { m: there exists a maximal set of m edge-disjoint 2-factors of K n }, as well as Sp H 2( n) = { m: there exists a maximal set of m edge-disjoint Hamiltonian cycles of K n }.
ISSN:0095-8956
1096-0902
DOI:10.1006/jctb.1993.1006