A Family of Perfect Factorisations of Complete Bipartite Graphs

A 1-factorisation of a graph is perfect if the union of any two of its 1-factors is a Hamiltonian cycle. Let n=p2 for an odd prime p. We construct a family of (p−1)/2 non-isomorphic perfect 1-factorisations of Kn, n. Equivalently, we construct pan-Hamiltonian Latin squares of order n. A Latin square...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series A 2002-05, Vol.98 (2), p.328-342
Hauptverfasser: Bryant, Darryn, Maenhaut, Barbara M., Wanless, Ian M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A 1-factorisation of a graph is perfect if the union of any two of its 1-factors is a Hamiltonian cycle. Let n=p2 for an odd prime p. We construct a family of (p−1)/2 non-isomorphic perfect 1-factorisations of Kn, n. Equivalently, we construct pan-Hamiltonian Latin squares of order n. A Latin square is pan-Hamiltonian if the permutation defined by any row relative to any other row is a single cycle.
ISSN:0097-3165
1096-0899
DOI:10.1006/jcta.2001.3240