The Geometry of Frequency Squares

This paper establishes a correspondence between mutually orthogonal frequency squares (MOFS) and nets satisfying an extra property (“framed nets”). In particular, we provide a new proof for the bound on the maximal size of a set of MOFS and obtain a geometric characterisation of the case of equality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series A 2001-11, Vol.96 (2), p.376-387
Hauptverfasser: Jungnickel, Dieter, Mavron, V.C., McDonough, T.P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper establishes a correspondence between mutually orthogonal frequency squares (MOFS) and nets satisfying an extra property (“framed nets”). In particular, we provide a new proof for the bound on the maximal size of a set of MOFS and obtain a geometric characterisation of the case of equality: necessary and sufficient conditions for the existence of a complete set of MOFS are given in terms of the existence of a certain type of PBIBD based on the L2-association scheme. We also discuss examples obtained from classical affine geometry and recursive construction methods for (complete) sets of MOFS.
ISSN:0097-3165
1096-0899
DOI:10.1006/jcta.2001.3196