The Geometry of Frequency Squares
This paper establishes a correspondence between mutually orthogonal frequency squares (MOFS) and nets satisfying an extra property (“framed nets”). In particular, we provide a new proof for the bound on the maximal size of a set of MOFS and obtain a geometric characterisation of the case of equality...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series A 2001-11, Vol.96 (2), p.376-387 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper establishes a correspondence between mutually orthogonal frequency squares (MOFS) and nets satisfying an extra property (“framed nets”). In particular, we provide a new proof for the bound on the maximal size of a set of MOFS and obtain a geometric characterisation of the case of equality: necessary and sufficient conditions for the existence of a complete set of MOFS are given in terms of the existence of a certain type of PBIBD based on the L2-association scheme. We also discuss examples obtained from classical affine geometry and recursive construction methods for (complete) sets of MOFS. |
---|---|
ISSN: | 0097-3165 1096-0899 |
DOI: | 10.1006/jcta.2001.3196 |