The Size of the Largest Antichain in the Partition Lattice
Consider the posetΠnof partitions of ann-element set, ordered by refinement. The sizes of the various ranks within this poset are the Stirling numbers of the second kind. Leta=12−elog(2)/4. We prove the following upper bound for the ratio of the size of the largest antichain to the size of the large...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series A 1998-08, Vol.83 (2), p.188-201 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider the posetΠnof partitions of ann-element set, ordered by refinement. The sizes of the various ranks within this poset are the Stirling numbers of the second kind. Leta=12−elog(2)/4. We prove the following upper bound for the ratio of the size of the largest antichain to the size of the largest rank:d(Πn⩽)S(n,Kn)⩽c2na(logn)−a−1/4,for suitable constantc2andn>1. This upper bound exceeds the best known lower bound for the latter ratio by a multiplicative factor ofO(1). |
---|---|
ISSN: | 0097-3165 1096-0899 |
DOI: | 10.1006/jcta.1998.2871 |