Rado Numbers fora(x+y)=bz

In the case of existence the smallest numberN=Rakis called a Rado number if it is guaranteed that anyk-coloring of the numbers 1,2,…,Ncontains a monochromatic solution of a given system of linear equations. We will determine Rak(a,b) for the equationa(x+y)=bzifb=2 andb=a+1. Also, the case of monochr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series A 1997-11, Vol.80 (2), p.356-363
Hauptverfasser: Harborth, Heiko, Maasberg, Silke
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the case of existence the smallest numberN=Rakis called a Rado number if it is guaranteed that anyk-coloring of the numbers 1,2,…,Ncontains a monochromatic solution of a given system of linear equations. We will determine Rak(a,b) for the equationa(x+y)=bzifb=2 andb=a+1. Also, the case of monochromatic sequences {xn} generated bya(xn+xn+1)=bxn+2 is discussed.
ISSN:0097-3165
1096-0899
DOI:10.1006/jcta.1997.2810