Independent Finite Sums forKm-Free Graphs
Recently, in conversation with Erdős, Hajnal asked whether or not for any triangle-free graphGon the vertex set N, there always exists a sequence ⦠xn⦔∞n=1so that wheneverFandHare distinct finite nonempty subsets of N, {∑n∈Fxn, ∑n∈Hxn} is not an edge ofG(that is,FS(⦠xn⦔∞n=1) is an independent set). W...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series A 1997-05, Vol.78 (2), p.171-198 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, in conversation with Erdős, Hajnal asked whether or not for any triangle-free graphGon the vertex set N, there always exists a sequence ⦠xn⦔∞n=1so that wheneverFandHare distinct finite nonempty subsets of N, {∑n∈Fxn, ∑n∈Hxn} is not an edge ofG(that is,FS(⦠xn⦔∞n=1) is an independent set). We answer this question in the negative. We also show that if one replaces the assumption thatGis triangle-free by the assertion that for somem,Gcontains no complete bipartite graphKm, m, then the conclusion does hold. If for somem⩾3,Gcontains noKm, we show there exists a sequence ⦠xn⦔∞n=1so that wheneverFandHare disjoint finite nonempty subsets of N, {∑n∈Fxn, ∑n∈Hxn} is not an edge ofG. Both of the affirmative results are in fact valid for a graphGon an arbitrary cancellative semigroup (S, +). |
---|---|
ISSN: | 0097-3165 1096-0899 |
DOI: | 10.1006/jcta.1996.2760 |