Superlinear Lower Bounds for Bounded-Width Branching Programs

We use algebraic techniques to obtain superlinear lower bounds on the size of bounded-width branching programs to solve a number of problems. In particular, we show that any bounded-width branching program computing a nonconstant threshold function has length Ω(n log log n), improving on the previou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer and system sciences 1995-06, Vol.50 (3), p.374-381
Hauptverfasser: Barrington, D.A.M., Straubing, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 381
container_issue 3
container_start_page 374
container_title Journal of computer and system sciences
container_volume 50
creator Barrington, D.A.M.
Straubing, H.
description We use algebraic techniques to obtain superlinear lower bounds on the size of bounded-width branching programs to solve a number of problems. In particular, we show that any bounded-width branching program computing a nonconstant threshold function has length Ω(n log log n), improving on the previous lower bounds known to apply to all such threshold functions. We also show that any program over a finite solvable monoid computing a product in a nonsolvable group has length Ω(n log log n). This result is a step toward proving the conjecture that the circuit complexity class ACC0 is properly contained in NC1.
doi_str_mv 10.1006/jcss.1995.1029
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jcss_1995_1029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002200008571029X</els_id><sourcerecordid>S002200008571029X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-43aea88dde0619fe1a4395cd059834b87d60782617e01232fadbef19aff8a5c3</originalsourceid><addsrcrecordid>eNp1j0FLAzEQhYMoWKtXz3vwunWSbHaTgwdbrAoLChY8hjSZtCnb3ZK0iv_eXVq8OZeZgfdm3kfILYUJBSjvNzalCVVK9CtTZ2REQUHOKlackxEAYzn0dUmuUtoAUCpKPiIPH4cdxia0aGJWd98Ys2l3aF3KfHca0eWfwe3X2TSa1q5Du8reY7eKZpuuyYU3TcKbUx-TxfxpMXvJ67fn19ljnVsuxD4vuEEjpXMIJVUeqSm4EtaBUJIXS1m5EirJSlohUMaZN26JnirjvTTC8jGZHM_a2KUU0etdDFsTfzQFPbDrgV0P7Hpg7w13R8POJGsaPwQP6c_FherhoZfJowz77F8Bo042YGvRhYh2r10X_vvwC9qmbSM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Superlinear Lower Bounds for Bounded-Width Branching Programs</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Barrington, D.A.M. ; Straubing, H.</creator><creatorcontrib>Barrington, D.A.M. ; Straubing, H.</creatorcontrib><description>We use algebraic techniques to obtain superlinear lower bounds on the size of bounded-width branching programs to solve a number of problems. In particular, we show that any bounded-width branching program computing a nonconstant threshold function has length Ω(n log log n), improving on the previous lower bounds known to apply to all such threshold functions. We also show that any program over a finite solvable monoid computing a product in a nonsolvable group has length Ω(n log log n). This result is a step toward proving the conjecture that the circuit complexity class ACC0 is properly contained in NC1.</description><identifier>ISSN: 0022-0000</identifier><identifier>EISSN: 1090-2724</identifier><identifier>DOI: 10.1006/jcss.1995.1029</identifier><identifier>CODEN: JCSSBM</identifier><language>eng</language><publisher>Brugge: Elsevier Inc</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Theoretical computing</subject><ispartof>Journal of computer and system sciences, 1995-06, Vol.50 (3), p.374-381</ispartof><rights>1995 Academic Press</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-43aea88dde0619fe1a4395cd059834b87d60782617e01232fadbef19aff8a5c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002200008571029X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3595630$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Barrington, D.A.M.</creatorcontrib><creatorcontrib>Straubing, H.</creatorcontrib><title>Superlinear Lower Bounds for Bounded-Width Branching Programs</title><title>Journal of computer and system sciences</title><description>We use algebraic techniques to obtain superlinear lower bounds on the size of bounded-width branching programs to solve a number of problems. In particular, we show that any bounded-width branching program computing a nonconstant threshold function has length Ω(n log log n), improving on the previous lower bounds known to apply to all such threshold functions. We also show that any program over a finite solvable monoid computing a product in a nonsolvable group has length Ω(n log log n). This result is a step toward proving the conjecture that the circuit complexity class ACC0 is properly contained in NC1.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0022-0000</issn><issn>1090-2724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLAzEQhYMoWKtXz3vwunWSbHaTgwdbrAoLChY8hjSZtCnb3ZK0iv_eXVq8OZeZgfdm3kfILYUJBSjvNzalCVVK9CtTZ2REQUHOKlackxEAYzn0dUmuUtoAUCpKPiIPH4cdxia0aGJWd98Ys2l3aF3KfHca0eWfwe3X2TSa1q5Du8reY7eKZpuuyYU3TcKbUx-TxfxpMXvJ67fn19ljnVsuxD4vuEEjpXMIJVUeqSm4EtaBUJIXS1m5EirJSlohUMaZN26JnirjvTTC8jGZHM_a2KUU0etdDFsTfzQFPbDrgV0P7Hpg7w13R8POJGsaPwQP6c_FherhoZfJowz77F8Bo042YGvRhYh2r10X_vvwC9qmbSM</recordid><startdate>19950601</startdate><enddate>19950601</enddate><creator>Barrington, D.A.M.</creator><creator>Straubing, H.</creator><general>Elsevier Inc</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950601</creationdate><title>Superlinear Lower Bounds for Bounded-Width Branching Programs</title><author>Barrington, D.A.M. ; Straubing, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-43aea88dde0619fe1a4395cd059834b87d60782617e01232fadbef19aff8a5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barrington, D.A.M.</creatorcontrib><creatorcontrib>Straubing, H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of computer and system sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barrington, D.A.M.</au><au>Straubing, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superlinear Lower Bounds for Bounded-Width Branching Programs</atitle><jtitle>Journal of computer and system sciences</jtitle><date>1995-06-01</date><risdate>1995</risdate><volume>50</volume><issue>3</issue><spage>374</spage><epage>381</epage><pages>374-381</pages><issn>0022-0000</issn><eissn>1090-2724</eissn><coden>JCSSBM</coden><abstract>We use algebraic techniques to obtain superlinear lower bounds on the size of bounded-width branching programs to solve a number of problems. In particular, we show that any bounded-width branching program computing a nonconstant threshold function has length Ω(n log log n), improving on the previous lower bounds known to apply to all such threshold functions. We also show that any program over a finite solvable monoid computing a product in a nonsolvable group has length Ω(n log log n). This result is a step toward proving the conjecture that the circuit complexity class ACC0 is properly contained in NC1.</abstract><cop>Brugge</cop><pub>Elsevier Inc</pub><doi>10.1006/jcss.1995.1029</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0000
ispartof Journal of computer and system sciences, 1995-06, Vol.50 (3), p.374-381
issn 0022-0000
1090-2724
language eng
recordid cdi_crossref_primary_10_1006_jcss_1995_1029
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Theoretical computing
title Superlinear Lower Bounds for Bounded-Width Branching Programs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superlinear%20Lower%20Bounds%20for%20Bounded-Width%20Branching%20Programs&rft.jtitle=Journal%20of%20computer%20and%20system%20sciences&rft.au=Barrington,%20D.A.M.&rft.date=1995-06-01&rft.volume=50&rft.issue=3&rft.spage=374&rft.epage=381&rft.pages=374-381&rft.issn=0022-0000&rft.eissn=1090-2724&rft.coden=JCSSBM&rft_id=info:doi/10.1006/jcss.1995.1029&rft_dat=%3Celsevier_cross%3ES002200008571029X%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S002200008571029X&rfr_iscdi=true