Superlinear Lower Bounds for Bounded-Width Branching Programs

We use algebraic techniques to obtain superlinear lower bounds on the size of bounded-width branching programs to solve a number of problems. In particular, we show that any bounded-width branching program computing a nonconstant threshold function has length Ω(n log log n), improving on the previou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer and system sciences 1995-06, Vol.50 (3), p.374-381
Hauptverfasser: Barrington, D.A.M., Straubing, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use algebraic techniques to obtain superlinear lower bounds on the size of bounded-width branching programs to solve a number of problems. In particular, we show that any bounded-width branching program computing a nonconstant threshold function has length Ω(n log log n), improving on the previous lower bounds known to apply to all such threshold functions. We also show that any program over a finite solvable monoid computing a product in a nonsolvable group has length Ω(n log log n). This result is a step toward proving the conjecture that the circuit complexity class ACC0 is properly contained in NC1.
ISSN:0022-0000
1090-2724
DOI:10.1006/jcss.1995.1029