Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation
This paper studies finite difference schemes for solving the generalized nonlinear Schrödinger (GNLS) equationiut−uxx+q(|u|2)u=f(x,t)u. A new linearlized Crank–Nicolson-type scheme is presented by applying an extrapolation technique to the real coefficient of the nonlinear term in the GNLS equation....
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 1999-01, Vol.148 (2), p.397-415 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies finite difference schemes for solving the generalized nonlinear Schrödinger (GNLS) equationiut−uxx+q(|u|2)u=f(x,t)u. A new linearlized Crank–Nicolson-type scheme is presented by applying an extrapolation technique to the real coefficient of the nonlinear term in the GNLS equation. Several schemes, including Crank–Nicolson-type schemes, Hopscotch-type schemes, split step Fourier scheme, and pseudospectral scheme, are adopted for solving three model problems of GNLS equation which arise from many physical problems. withq(s)=s2,q(s)=ln(1+s), andq(s)=−4s/(1+s), respectively. The numerical results demonstrate that the linearized Crank–Nicolson scheme is efficient and robust. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1006/jcph.1998.6120 |