Deformation Techniques for Efficient Polynomial Equation Solving

Suppose we are given a parametric polynomial equation system encoded by an arithmetic circuit, which represents a generically flat and unramified family of zero-dimensional algebraic varieties. Let us also assume that there is given the complete description of the solution of a particular unramified...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Complexity 2000-03, Vol.16 (1), p.70-109
Hauptverfasser: Heintz, Joos, Krick, Teresa, Puddu, Susana, Sabia, Juan, Waissbein, Ariel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose we are given a parametric polynomial equation system encoded by an arithmetic circuit, which represents a generically flat and unramified family of zero-dimensional algebraic varieties. Let us also assume that there is given the complete description of the solution of a particular unramified parameter instance of our system. We show that it is possible to “move” the given particular solution along the parameter space in order to reconstruct—by means of an arithmetic circuit—the coordinates of the solutions of the system for an arbitrary parameter instance. The underlying algorithm is highly efficient, i.e., polynomial in the syntactic description of the input and the following geometric invariants: the number of solutions of a typical parameter instance and the degree of the polynomials occurring in the output. In fact, we prove a slightly more general result, which implies the previous statement by means of a well-known primitive element algorithm. We produce an efficient algorithmic description of the hypersurface obtained projecting polynomially the given generically flat family of varieties into a suitable affine space.
ISSN:0885-064X
1090-2708
DOI:10.1006/jcom.1999.0529