Behavior of Partial Sums of Wavelet Series
Given a distribution f belonging the Sobolev space H1/2, we show that partial sums of its wavelet expansion behave like truncated versions of the inverse Fourier transform of f. Our result is sharp in the sense that such behavior no longer happens in general for Hs if s
Gespeichert in:
Veröffentlicht in: | Journal of approximation theory 2000-03, Vol.103 (1), p.55-60 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a distribution f belonging the Sobolev space H1/2, we show that partial sums of its wavelet expansion behave like truncated versions of the inverse Fourier transform of f. Our result is sharp in the sense that such behavior no longer happens in general for Hs if s |
---|---|
ISSN: | 0021-9045 1096-0430 |
DOI: | 10.1006/jath.1999.3410 |