Behavior of Partial Sums of Wavelet Series

Given a distribution f belonging the Sobolev space H1/2, we show that partial sums of its wavelet expansion behave like truncated versions of the inverse Fourier transform of f. Our result is sharp in the sense that such behavior no longer happens in general for Hs if s

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory 2000-03, Vol.103 (1), p.55-60
1. Verfasser: Reyes, Noli N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a distribution f belonging the Sobolev space H1/2, we show that partial sums of its wavelet expansion behave like truncated versions of the inverse Fourier transform of f. Our result is sharp in the sense that such behavior no longer happens in general for Hs if s
ISSN:0021-9045
1096-0430
DOI:10.1006/jath.1999.3410