Inequalities for the Associated Legendre Functions
In this paper bounds for the associated Legendre functions of the first kindPmn(x) for realx∈[−1,1] and integersm,nare proved. A relation is derived that allows us to generalize known bounds of the Legendre polynomialsPn(x)≡P0n(x) for the Legendre functionsPmn(x) of non-zero orderm. Furthermore, upp...
Gespeichert in:
Veröffentlicht in: | Journal of approximation theory 1998-11, Vol.95 (2), p.178-193 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper bounds for the associated Legendre functions of the first kindPmn(x) for realx∈[−1,1] and integersm,nare proved. A relation is derived that allows us to generalize known bounds of the Legendre polynomialsPn(x)≡P0n(x) for the Legendre functionsPmn(x) of non-zero orderm. Furthermore, upper and lower bounds of the typeA(α,n,m)⩽maxx∈[−1,1]|(1−x2)α/2Pmn(x)|⩽B(α,,n,m) are proved for all 0⩽α⩽1/2 and 1⩽|m|⩽n. Forα=0 andα=1/2 these upper bounds are improvements and simplifications of known results. |
---|---|
ISSN: | 0021-9045 1096-0430 |
DOI: | 10.1006/jath.1998.3207 |