Extremal Homogeneous Polynomials on Real Normed Spaces
If Pis a continuous m-homogeneous polynomial on a real normed space and Pis the associated symmetric m-linear form, the ratio ‖ P‖/‖ P‖ always lies between 1 and m m / m!. We show that, as in the complex case investigated by Sarantopoulos (1987, Proc. Amer. Math. Soc. 99, 340–346), there are P'...
Gespeichert in:
Veröffentlicht in: | Journal of approximation theory 1999-04, Vol.97 (2), p.201-213 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If
Pis a continuous
m-homogeneous polynomial on a real normed space and
Pis the associated symmetric
m-linear form, the ratio ‖
P‖/‖
P‖ always lies between 1 and
m
m
/
m!. We show that, as in the complex case investigated by Sarantopoulos (1987,
Proc. Amer. Math. Soc.
99, 340–346), there are
P's for which ‖
P‖/‖
P‖=
m
m
/
m! and for which
Pachieves norm if and only if the normed space contains an isometric copy of ℓ
m
1. However, unlike the complex case, we find a plentiful supply of such polynomials provided
m⩾4. |
---|---|
ISSN: | 0021-9045 1096-0430 |
DOI: | 10.1006/jath.1996.3273 |