Extremal Homogeneous Polynomials on Real Normed Spaces

If Pis a continuous m-homogeneous polynomial on a real normed space and Pis the associated symmetric m-linear form, the ratio ‖ P‖/‖ P‖ always lies between 1 and m m / m!. We show that, as in the complex case investigated by Sarantopoulos (1987, Proc. Amer. Math. Soc. 99, 340–346), there are P'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory 1999-04, Vol.97 (2), p.201-213
Hauptverfasser: Kirwan, Pádraig, Sarantopoulos, Yannis, Tonge, Andrew M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If Pis a continuous m-homogeneous polynomial on a real normed space and Pis the associated symmetric m-linear form, the ratio ‖ P‖/‖ P‖ always lies between 1 and m m / m!. We show that, as in the complex case investigated by Sarantopoulos (1987, Proc. Amer. Math. Soc. 99, 340–346), there are P's for which ‖ P‖/‖ P‖= m m / m! and for which Pachieves norm if and only if the normed space contains an isometric copy of ℓ m 1. However, unlike the complex case, we find a plentiful supply of such polynomials provided m⩾4.
ISSN:0021-9045
1096-0430
DOI:10.1006/jath.1996.3273