A Dual Approach to Constrained Interpolationfrom a Convex Subset of Hilbert Space
Many interesting and important problems of best approximationare included in (or can be reduced to) one of the followingtype: in a Hilbert spaceX, find the best approximationPK(x) to anyx∈Xfrom the setK≔C∩A−1(b),whereCis a closed convex subset ofX,Ais a bounded linearoperator fromXinto a finite-dime...
Gespeichert in:
Veröffentlicht in: | Journal of approximation theory 1997-09, Vol.90 (3), p.385-414 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many interesting and important problems of best approximationare included in (or can be reduced to) one of the followingtype: in a Hilbert spaceX, find the best approximationPK(x) to anyx∈Xfrom the setK≔C∩A−1(b),whereCis a closed convex subset ofX,Ais a bounded linearoperator fromXinto a finite-dimensional Hilbert spaceY, andb∈Y. The main point of this paper is to show thatPK(x)isidenticaltoPC(x+A*y)—the best approximationto a certain perturbationx+A*yofx—from the convexsetCor from a certain convex extremal subsetCbofC. Thelatter best approximation is generally much easier to computethan the former. Prior to this, the result had been known onlyin the case of a convex cone or forspecialdata sets associatedwith a closed convex set. In fact, we give anintrinsic characterizationof those pairs of setsCandA−1(b) for which this canalways be done. Finally, in many cases, the best approximationPC(x+A*y) can be obtained numerically from existingalgorithms or from modifications to existing algorithms. Wegive such an algorithm and prove its convergence |
---|---|
ISSN: | 0021-9045 1096-0430 |
DOI: | 10.1006/jath.1996.3082 |