Approximation by Polynomials with Restricted Zeros
This paper discusses convergence properties of polynomials whose zeros lie on the real axis or in the upper half-plane. A result of Levin shows that uniform convergence of such polynomials to a non-zero limit on a complex sequence converging not too East to a limit in the lower half-plane implies lo...
Gespeichert in:
Veröffentlicht in: | Journal of approximation theory 1994-10, Vol.79 (1), p.109-124 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper discusses convergence properties of polynomials whose zeros lie on the real axis or in the upper half-plane. A result of Levin shows that uniform convergence of such polynomials to a non-zero limit on a complex sequence converging not too East to a limit in the lower half-plane implies locally uniform convergence in
C. We give a relatively simple proof of this result and present several extensions and examples which show that the criterion in Levin′s theorem is almost sharp. |
---|---|
ISSN: | 0021-9045 1096-0430 |
DOI: | 10.1006/jath.1994.1116 |