Approximation by Polynomials with Restricted Zeros

This paper discusses convergence properties of polynomials whose zeros lie on the real axis or in the upper half-plane. A result of Levin shows that uniform convergence of such polynomials to a non-zero limit on a complex sequence converging not too East to a limit in the lower half-plane implies lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory 1994-10, Vol.79 (1), p.109-124
Hauptverfasser: Clunie, J.G., Kuijlaars, A.B.J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper discusses convergence properties of polynomials whose zeros lie on the real axis or in the upper half-plane. A result of Levin shows that uniform convergence of such polynomials to a non-zero limit on a complex sequence converging not too East to a limit in the lower half-plane implies locally uniform convergence in C. We give a relatively simple proof of this result and present several extensions and examples which show that the criterion in Levin′s theorem is almost sharp.
ISSN:0021-9045
1096-0430
DOI:10.1006/jath.1994.1116